Heterogeneous Transductive Transfer Learning Algorithm
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The lack of labeled data affects the performance in target domain. Fortunately, there are ample labeled data in some other related source domains. Transfer learning allows knowledge to be transferred from source domains to target domain. In real applications, such as text-image and cross-language transfer learning, the feature spaces of source and target domains are different, that is heterogeneous transfer learning. This paper focuses on heterogeneous transductive transfer learning (HTTL), an approach to improve the performance of unlabeled data in target domain by using some labeled data in heterogeneous source domains. Since the feature spaces of source domains and target domain are different, the key problem is to learn the mapping functions between the heterogeneous source domains and target domain. This paper proposes to learn the mapping functions by unsupervised matching in the different feature spaces. The data in source domains can be re-represented with the mapping functions and transferred to the target domain. Thus, in target domain, there are some labeled data which come from the source domains. Standard machine learning methods such as support vector machine can be used to train classifiers for predicting the labels of unlabeled data in target domain. Moreover, a probabilistic interpretation is derived to verify the robustness of the presented method over certain noises in the utility matrices. A sample complexity bound is given to indicate how many instances are needed to adequately find the mapping functions. The effectiveness of the proposed approach is verified by experiments on four real-world data sets.

    Reference
    Related
    Cited by
Get Citation

杨柳,景丽萍,于剑.一种异构直推式迁移学习算法.软件学报,2015,26(11):2762-2780

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 28,2015
  • Revised:August 26,2015
  • Adopted:
  • Online: November 04,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063