###
Journal of Software:2016.27(9):2414-2425

支持绿色异构计算的能效感知调度模型与算法
王静莲,龚斌,刘弘,李少辉
(鲁东大学 信息与电气工程学院, 山东 烟台 264025;山东大学 计算机科学与技术学院, 山东 济南 250101;山东大学 计算机科学与技术学院, 山东 济南 250101;山东省高性能计算中心, 山东 济南 250101;山东师范大学 信息科学与工程学院, 山东 济南 250014)
Model and Algorithm of Energy-Efficiency Aware Scheduling for Green Heterogeneous Computing
WANG Jing-Lian,GONG Bin,LIU Hong,LI Shao-Hui
(School of Information and Electrical Engineering, Ludong University, Yantai 264025, China;School of Computer Science and Technology, Shandong University, Ji'nan 250101, China;School of Computer Science and Technology, Shandong University, Ji'nan 250101, China;Shandong High Performance Computing Center, Ji'nan 250101, China;School of Information Science and Engineering, Shandong Normal University, Ji'nan 250014, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 1025   Download 1372
Received:January 22, 2015    Revised:April 14, 2015
> 中文摘要: 异构调度可使大规模计算系统采用并行方式聚合广域分布的各种资源以提高性能.传统调度目标追求高性能而忽视高效能,远不能适应绿色计算科学发展新要求.因此,在理论上,一方面基于对动态频率和电压等系统参数的精细表述及有效量化,建立面向协同异构计算且易于复用的能效感知云调度模型;另一方面,提出并实现适于超计算机混合体系的多学科背景的元启发式多目标全局优化算法.从技术上解决了面向不同环境目标的云调度实施条件界定及其调度指标(时间、能效)实时变化描述等问题.大量仿真实验结果表明:与3个元启发式云调度器相比,该方法在能效及可扩展等方面优势明显;对于高维实例,整体性能改善分别达到8%,12%和14%.
Abstract:Designed to provide pervasive access to distributed resources in parallel ways, heterogeneous scheduling is extensively applied in large-scale computing system for its high performance. Conventional real-time scheduling algorithms, however, often overlook energy-efficiency while focusing on stringent timing constraints. To engage in green heterogeneous computing, a reusable energy-aware cloud model is first presented via mathematical formulation and quantization of the system parameters such as dynamic voltage and frequency scaling (DVFS), and dynamic power management (DPM). In addition, multidisciplinary context for multi-objective global optimization meta-heuristic is proposed and accomplished based on the supercomputer hybrid architecture. Furthermore, some technological breakthroughs are achieved with respect to boundary conditions for different heterogeneous computing and cloud scheduling, and descriptions of real-time variation of scheduling indexes (stringent timing constraints and energy-efficiency). Extensive simulation experiments highlight higher efficacy and better scalability for the proposed approaches compared with the other three meta-heuristics; the overall improvements achieve 8%, 12% and 14% for high-dimension instances.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61070017,61272094);国家高技术研究发展计划(863)(2006AA01A113,2012AA01A306) 国家自然科学基金(61070017,61272094);国家高技术研究发展计划(863)(2006AA01A113,2012AA01A306)
Foundation items:National Natural Science Foundation of China (61070017, 61272094); National High-Tech R&D Program of China (863) (2006AA01A113, 2012AA01A306)
Reference text:

王静莲,龚斌,刘弘,李少辉.支持绿色异构计算的能效感知调度模型与算法.软件学报,2016,27(9):2414-2425

WANG Jing-Lian,GONG Bin,LIU Hong,LI Shao-Hui.Model and Algorithm of Energy-Efficiency Aware Scheduling for Green Heterogeneous Computing.Journal of Software,2016,27(9):2414-2425