###
Journal of Software:2015.26(8):1853-1870

面向随机模型检验的模型抽象技术
刘阳,李宣东,马艳
(计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210093;Department of computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore;南京航空航天大学 计算机科学与技术学院, 江苏 南京 210016)
Model Abstraction for Stochastic Model Checking
LIU Yang,LI Xuan-Dong,MA Yan
(State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210093, China;Department of computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore;College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3681   Download 2466
Received:July 08, 2014    Revised:March 27, 2015
> 中文摘要: 随机模型检验是经典模型检验理论的延伸和推广,由于其结合了经典模型检验算法和线性方程组求解或线性规划算法等,并且运算处理的是关于状态的概率向量而非经典模型检验中的位向量,所以状态爆炸问题在随机模型检验中更为严重.抽象作为缓解状态空间爆炸问题的重要技术之一,已经开始被应用到随机模型检验领域并取得了一定的进展.以面向随机模型检验的模型抽象技术为研究对象,首先给出了模型抽象技术的问题描述,然后按抽象模型构造技术分类归纳了其研究方向及目前的研究进展,最后对比了目前的模型抽象技术及其关系,总结出其还未能给出模型抽象问题的满意答案,并指出了有效解决模型抽象问题未来的研究方向.
Abstract:Stochastic model checking is a recent extension and generalization of the classical model checking. Stochastic model checking combines the classical model checking algorithms and linear equation solving or linear programming algorithms, moreover, it processes the probability vector instead of the bit vector. Consequently, the state explosion problem is more severe in stochastic model checking than classical model checking. Abstraction is an important means to tackle the state explosion problem, and it has made some progress in applying to the field of stochastic models testing. This study focus on model abstraction for stochastic model checking. First, the problem of model abstraction is formally presented. Then, the advances in the research area are classified and summarized according to the construction technology of abstraction model. At last, the various abstraction technologies are compared in regard to the effectiveness of solving the model abstraction problem, and the future research topics for improvement in solving the model abstraction problem are pointed out.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61021062, 61472179); 中国博士后科学基金(2013M531328); 山东省自然科学基金(ZR2012FQ 013); 山东省高等学校科技计划(J13LN10); 泰安市科技发展计划(201330629) 国家自然科学基金(61021062, 61472179); 中国博士后科学基金(2013M531328); 山东省自然科学基金(ZR2012FQ 013); 山东省高等学校科技计划(J13LN10); 泰安市科技发展计划(201330629)
Foundation items:
Reference text:

刘阳,李宣东,马艳.面向随机模型检验的模型抽象技术.软件学报,2015,26(8):1853-1870

LIU Yang,LI Xuan-Dong,MA Yan.Model Abstraction for Stochastic Model Checking.Journal of Software,2015,26(8):1853-1870