Journal of Software:2015.26(6):1356-1372

(智能通信软件与多媒体北京市重点实验室(北京邮电大学), 北京 100876;北京邮电大学 计算机学院, 北京 100876)
Research on Social Recommender Systems
MENG Xiang-Wu,LIU Shu-Dong,ZHANG Yu-Jie,HU Xun
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunication), Beijing 100876, China;School of the Computer Science, Beijing University of Posts and Telecommunication, Beijing 100876, China)
Chart / table
Similar Articles
Article :Browse 6522   Download 7918
Received:April 25, 2014    Revised:March 09, 2015
> 中文摘要: 近年来,社会化推荐系统已成为推荐系统研究领域较为活跃的研究方向之一.如何利用用户社会属性信息缓解推荐系统中数据稀疏性和冷启动问题、提高推荐系统的性能,成为社会化推荐系统的主要任务.对最近几年社会化推荐系统的研究进展进行综述,对信任推理算法、推荐关键技术及其应用进展进行前沿概括、比较和分析.最后,对社会化推荐系统中有待深入研究的难点、热点及发展趋势进行展望.
Abstract:Social recommender systems have recently become one of the hottest topics in the domain of recommender systems. The main task of social recommender system is to alleviate data sparsity and cold-start problems, and improve its performance utilizing users' social attributes. This paper presents an overview of the field of social recommender systems, including trust inference algorithms, key techniques and typical applications. The prospects for future development and suggestions for possible extensions are also discussed.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60872051); 北京市教育委员会共建项目 国家自然科学基金(60872051); 北京市教育委员会共建项目
Foundation items:
Reference text:


MENG Xiang-Wu,LIU Shu-Dong,ZHANG Yu-Jie,HU Xun.Research on Social Recommender Systems.Journal of Software,2015,26(6):1356-1372