Statistical Model Checking for Rare-Event in Safety-Critical System
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In open environment, the stochastic behavior of safety-critical system may lead to occurrence of rare-event, which is critical to the system's reliability. It is very important to estimate the probability of rare-event occurrence. Statistical model checking (SMC) is a simulation-based model checking technology, which integrates the simulation and statistical analysis technique to improve the efficiency of traditional model checking. SMC is used to verify and estimate the reliability of complex safety-critical system. However, the most challenging problem is that it is impossible to estimate and predict the probability of rare-event based on SMC with the acceptable sample size. To solve this problem, this study proposes an improved statistical model checking framework, designs and develops a statistical model checker based on machine learning to estimate and predict the probability of rare-event with fewer sample size. To demonstrate the presented approach, a case study on collision avoidance system in CBTC is discussed. The analysis results show that the proposed approach is feasible and efficient.

    Reference
    Related
    Cited by
Get Citation

杜德慧,程贝,刘静.面向安全攸关系统中小概率事件的统计模型检测.软件学报,2015,26(2):305-320

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2014
  • Revised:October 31,2014
  • Adopted:
  • Online: February 06,2015
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063