###
Journal of Software:2015.26(9):2286-2296

具有模态词□φ=1V2φ且可靠与完备的公理系统
邓少波,黎敏,曹存根,眭跃飞
(中国科学院 计算技术研究所 智能信息处理重点实验室, 北京 100190;中国科学院大学, 北京 100049;南昌工程学院 信息工程学院, 江西 南昌 330099)
Sound and Complete Axiomatic System with a Modality □φ=1V2φ
DENG Shao-Bo,LI Min,CAO Cun-Gen,SUI Yue-Fei
(Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;Information Engineering, NanChang Institute of Technology, Nanchang 330099, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 1993   Download 1621
Received:June 23, 2014    Revised:August 15, 2014
> 中文摘要: 提出具有模态词□φ=1V2φ的命题模态逻辑,给出其语言、语法与语义,其公理化系统是可靠与完备的,其中,12是给定的模态词.该逻辑的公理化系统具有与公理系统S5相似的语言,但具有不同的语法与语义.对于任意的公式φ,□φ=1V2φ;框架定义为三元组W,R1,R2,模型定义为四元组W,R1,R2,I;在完备性定理证明过程中,需要在由所有极大协调集所构成的集合上构造出两个等价关系,其典型模型的构建方法与经典典型模型的构建方法不同.如果1的可达关系R1等于2的可达关系R2,那么该逻辑的公理化系统变成S5.
中文关键词: 命题模态逻辑  模态词  公理系统
Abstract:This paper proposes a propositional modal logic with a modality □φ=1V2φ, and specifies the language, the syntax and the semantics for the logic. The axiomatic system for is sound and complete, where 1 and 2 are given in this paper. The axiomatic system for the logic has the similar language, but has the different syntax and semantics. For any formula φ, □φ=1V2φ; the frame for the axiomatic system is defined as an tripleW,R1,R2, and the model is defined as quadruple W,R1,R2,I. When the completeness theorem is proved, two equivalence relations are constructed on the set that is made up of all the maximal consistent sets. The construction method of a canonical model for the axiomatic system is different from the classical canonical model. If the accessibility relation R1 for 1 is the accessibility relation R2 for 2, then the axiomatic system for changes into S5.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61363047, 61173063, 60773059, 61035004); 江西省教育厅科技厅项目(GJJ14748); 江西省科技厅项目(20111BBE50008, 2011ZBBE50035, 20112BBE50052) 国家自然科学基金(61363047, 61173063, 60773059, 61035004); 江西省教育厅科技厅项目(GJJ14748); 江西省科技厅项目(20111BBE50008, 2011ZBBE50035, 20112BBE50052)
Foundation items:
Reference text:

邓少波,黎敏,曹存根,眭跃飞.具有模态词□φ=1V2φ且可靠与完备的公理系统.软件学报,2015,26(9):2286-2296

DENG Shao-Bo,LI Min,CAO Cun-Gen,SUI Yue-Fei.Sound and Complete Axiomatic System with a Modality □φ=1V2φ.Journal of Software,2015,26(9):2286-2296