Topic Modeling Approach to Named Entity Linking
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Named entity linking (NEL) is an advanced technology which links a given named entity to an unambiguous entity in the knowledge base, and thus plays an important role in a wide range of Internet services, such as online recommender systems and Web search engines. However, with the explosive increasing of online information and applications, traditional solutions of NEL are facing more and more challenges towards linking accuracy due to the large number of online entities. Moreover, the entities are usually associated with different semantic topics (e.g., the entity “Apple” could be either a fruit or a brand) whereas the latent topic distributions of words and entities in same documents should be similar. To address this issue, this paper proposes a novel topic modeling approach to named entity linking. Different from existing works, the new approach provides a comprehensive framework for NEL and can uncover the semantic relationship between documents and named entities. Specifically, it first builds a knowledge base of unambiguous entities with the help of Wikipedia. Then, it proposes a novel bipartite topic model to capture the latent topic distribution between entities and documents. Therefore, given a new named entity, the new approach can link it to the unambiguous entity in the knowledge base by calculating their semantic similarity with respect to latent topics. Finally, the paper conducts extensive experiments on a real-world data set to evaluate our approach for named entity linking. Experimental results clearly show that the proposed approach outperforms other state-of-the-art baselines with a significant margin.

    Reference
    Related
    Cited by
Get Citation

怀宝兴,宝腾飞,祝恒书,刘淇.一种基于概率主题模型的命名实体链接方法.软件学报,2014,25(9):2076-2087

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 05,2014
  • Revised:May 14,2014
  • Adopted:
  • Online: September 09,2014
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063