###
Journal of Software:2013.24(11):2758-2766

融合显著信息的LDA极光图像分类
韩冰,杨辰,高新波
(西安电子科技大学 电子工程学院, 陕西 西安 710071)
Aurora Image Classification Based on LDA Combining with Saliency Information
HAN Bing,YANG Chen,GAO Xin-Bo
(School of Electronic Engineering, Xidian University, Xi'an 710071, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 4275   Download 2751
Received:May 03, 2013    Revised:July 17, 2013
> 中文摘要: 美丽的极光形态各异,不同形态的极光蕴含不同的物理意义,所以研究极光图像的分类具有重要的科学价值.在LDA(latent Dirichlet allocation)模型基础上提出了一种融合显著信息的LDA 方法(LDA with saliencyinformation,简称SI-LDA),利用极光图像的谱残差(spectral residual,简称SR)显著信息生成视觉字典,加强极光图像的语义信息,并将其用于极光图像的特征表示.最后,利用SVM分类器对极光图像进行分类.实验结果表明,所提出的算法获得了良好的分类结果.
Abstract:There are different shapes of auroras in the sky around the arctic pole and the antarctic pole and there are different physical meaning and significance for different auroras. Therefore, the research on classification of aurora images has significant scientific value. In this paper, an aurora image classification method based on LDA with saliency information (SI-LDA) is proposed. First, the salience information of aurora images is used to generate visual dictionary which enhances the semantic information of aurora images. Next, the aurora images are represented by SI-LDA. Finally, SVM is applied to classify aurora images. Experimental results show that the proposed method achieves high performance over other algorithms available.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(41031064,60902082);教育部留学回国人员科研启动基金;2010年海洋公益性行业科研专项经费(201005017);陕西省自然科学基础研究计划(2011JQ8019);中央高校基本科研业务费专项资金(K5051302008,K5051202048) 国家自然科学基金(41031064,60902082);教育部留学回国人员科研启动基金;2010年海洋公益性行业科研专项经费(201005017);陕西省自然科学基础研究计划(2011JQ8019);中央高校基本科研业务费专项资金(K5051302008,K5051202048)
Foundation items:
Reference text:

韩冰,杨辰,高新波.融合显著信息的LDA极光图像分类.软件学报,2013,24(11):2758-2766

HAN Bing,YANG Chen,GAO Xin-Bo.Aurora Image Classification Based on LDA Combining with Saliency Information.Journal of Software,2013,24(11):2758-2766