###
Journal of Software:2013.24(8):1868-1884

融合奇异性和扩散过程的协同过滤模型
杨兴耀,于炯,吐尔根·依布拉音,廖彬,钱育蓉
(新疆大学 信息科学与工程学院, 新疆 乌鲁木齐 830046;新疆大学 信息科学与工程学院, 新疆 乌鲁木齐 830046;新疆大学 软件学院, 新疆 乌鲁木齐 830008)
Collaborative Filtering Model Fusing Singularity and Diffusion Process
YANG Xing-Yao,YU Jiong,Turgun IBRAHIM,LIAO Bin,QIAN Yu-Rong
(College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China;School of Software, Xinjiang University, Urumqi 830008, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 4271   Download 3800
Received:June 26, 2012    Revised:August 20, 2012
> 中文摘要: 作为解决信息过载问题的有效方式,推荐系统能够根据用户偏好对海量信息进行过滤,为用户提供个性化的推荐.但在推荐过程中,性能表现优异的协同过滤模型并没有充分利用上下文信息,这在一定程度上使系统面临性能瓶颈.为了进一步提高系统性能,从评分上下文信息着手,通过对项目评分进行分类统计获得评分奇异性,同时借鉴多渠道扩散相似性模型将推荐系统作为用户-项目二分网络的思想,提出了融合奇异性和扩散过程的协同过滤模型(collaborative filtering model fusing singularity and diffusion process,简称CFSDP).为了表明模型的优越性,比较实验基于MovieLens,NetFlix 和Jester 这3 个不同的数据集展开.实验结果表明,该模型不仅具有良好的扩展性,而且在合理的时间开销下,可以显著提高系统的预测和推荐质量.
Abstract:As a key solution to the problem of information overload, the recommender system can filter a large deal of information according to user’s preference and provide personalized recommendations for the user. However, traditional collaborative filtering models with excellent performance haven’t made full use of the contextual information in the process of recommendation, which to some extent confronts the system with the performance bottleneck. In order to improve the system performance further, this paper starts with the contextual information on ratings, and proposes a collaborative filtering model fusing singularity and diffusion process (CFSDP) by taking advantage of ratings’ singularities obtained from the classified statistics of ratings and referring to the similarity model of multi-channel diffusion which regards recommender system as a user-item bipartite network. To demonstrate the superiority of the proposed model, the study provides comparative experimental results based on the MovieLens, NetFlix and Jester data sets. Finally, the results show that the model not only has better extensibility, but also can observably improve the prediction and recommendation quality of system with a reasonable time cost.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61063042, 61262088, 61063026); 新疆自治区自然科学基金(2011211A011); 新疆高校重大科研项目(XJEDU2012I10); 新疆大学博士创新项目(XJUBSCX-2011007); 新疆大学博士科研启动基金(BS100128) 国家自然科学基金(61063042, 61262088, 61063026); 新疆自治区自然科学基金(2011211A011); 新疆高校重大科研项目(XJEDU2012I10); 新疆大学博士创新项目(XJUBSCX-2011007); 新疆大学博士科研启动基金(BS100128)
Foundation items:
Reference text:

杨兴耀,于炯,吐尔根·依布拉音,廖彬,钱育蓉.融合奇异性和扩散过程的协同过滤模型.软件学报,2013,24(8):1868-1884

YANG Xing-Yao,YU Jiong,Turgun IBRAHIM,LIAO Bin,QIAN Yu-Rong.Collaborative Filtering Model Fusing Singularity and Diffusion Process.Journal of Software,2013,24(8):1868-1884