Journal of Software:2013.24(7):1614-1625

(中国科学技术大学 计算机科学与技术学院, 安徽 合肥 230027)
Extending Action Languages for Intelligent Service Robot Task Planning
JIN Guo-Qiang,CHEN Xiao-Ping
(School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China)
Chart / table
Similar Articles
Article :Browse 1900   Download 2593
Received:May 12, 2012    Revised:July 26, 2012
> 中文摘要: 针对智能服务机器人的任务规划,引入复合行动对行动语言C+进行了扩展,并实现了其求解系统.在扩展的行动语言C+中,复合行动被定义成一定条件下一系列基本行动的连续执行.通过刻画扩展的行动描述和其对应的转移系统的关系,证明了扩展行动语言相对于原始行动语言的可靠性和完备性.在智能服务机器人的任务规划中,复合行动可以看成是一种对于机器人能力的“高层”抽象.这样的扩展使得对于机器人规划系统的建模更加直观,具有更大的灵活性,并且扩展有增量式的优点.实验结果表明,通过引入复合行动,对于比较复杂的机器人任务规划问题,可以很好地改进求解效率.
Abstract:To improve the task planning module in intelligent service robots, an extension of the action language C+ is proposed and implemented by introducing composite actions as a sequential executions of other actions. The soundness and completeness of the extension is proved by relating the action description in the extended C+ to its corresponding transition system. In the domain of robotic task planning, a composite action can be treated as a “high-level” abstraction of the robot’s physical functions. Such an extension leads to a more intuitive and flexible representation of the robot’s task planning system, and the knowledge of composite actions can be added to the domain incrementally. The experimental results show that for large domains, the extension leads to a great improvement of the solving efficiency.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60745002, 61105039, 61175057); 国家高技术研究发展计划(863)(2008AA01Z150) 国家自然科学基金(60745002, 61105039, 61175057); 国家高技术研究发展计划(863)(2008AA01Z150)
Foundation items:
Reference text:


JIN Guo-Qiang,CHEN Xiao-Ping.Extending Action Languages for Intelligent Service Robot Task Planning.Journal of Software,2013,24(7):1614-1625