###
Journal of Software:2011.22(12):3004-3014

基于多尺度方向特征的快速鲁棒人体检测算法
叶齐祥,焦建彬,蒋树强
(中国科学院 研究生院,北京 100049;中国科学院 计算技术研究所,北京 100190)
Fast and Robust Pedestrian Detection Algorithm with Multi-Scale Orientation Features
YE Qi-Xiang,JIAO Jian-Bin,JIANG Shu-Qiang
(Graduate University, The Chinese Academy of Sciences, Beijing 100049, China;Institute of Computing Technique, The Chinese Academy of Sciences, Beijing 100190, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3946   Download 3150
Received:April 06, 2010    Revised:January 20, 2011
> 中文摘要: 提出一种多尺度方向(multi-scale orientation,简称MSO)特征描述子用于静态图片中的人体目标检测.MSO 特征由随机采样的图像方块组成,包含了粗特征集合与精特征集合.其中,粗特征是图像块的方向,而精特征由Gabor 小波幅值响应竞争获得.对于两种特征,分别采用贪心算法进行选择,并使用级联Adaboost 算法及SVM 训练检测模型.基于粗特征的Adaboost 分类器能够保证高的检测速度,而基于精特征的SVM 分类器则保证了检测精度.另外,通过MSO 特征块的平移,使得所提算法能够检
中文关键词: 目标检测  人体检测  多视角  遮挡
Abstract:The multi-scale orientation (MSO) features for pedestrian detection in still images are put forwarded in this paper. Extracted on randomly sampled square image blocks (units), MSO features are made up of coarse and fine features, which are calculated with a unit gradient and the Gabor wavelet magnitudes respectively. Greedy methods are employed respectively to select the features. Furthermore, the selected features are inputted into a cascade classifier with Adaboost and SVM for classification. In addition, the spatial location of MSO units can be shifted, are used to the handle multi-view problem and assembled; therefore, the occluded features are completed with average features of training positives, given an occlusion model, which enable the proposed approach to work in crowd scenes. Experimental results on INRIA testset and SDL multi-view testset report the state-of-arts results on INRIA include it is 12.4 times the faster than SVM+HOG method.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61039003, 60872143); 国家重点基础研究发展计划(973)(2011CB706900, 2010CB731800) 国家自然科学基金(61039003, 60872143); 国家重点基础研究发展计划(973)(2011CB706900, 2010CB731800)
Foundation items:
Reference text:

叶齐祥,焦建彬,蒋树强.基于多尺度方向特征的快速鲁棒人体检测算法.软件学报,2011,22(12):3004-3014

YE Qi-Xiang,JIAO Jian-Bin,JIANG Shu-Qiang.Fast and Robust Pedestrian Detection Algorithm with Multi-Scale Orientation Features.Journal of Software,2011,22(12):3004-3014