###
Journal of Software:2011.22(5):852-864

基于偏好推荐的可信服务选择
朱锐,王怀民,冯大为
(国防科学技术大学 计算机学院,湖南 长沙 410073;国防科学技术大学 计算机学院,湖南 长沙 410073;国防科学技术大学 并行与分布处理国防科技重点实验室,湖南 长沙 410073)
Trustworthy Services Selection Based on Preference Recommendation
ZHU Rui,WANG Huai-Min,FENG Da-Wei
(School of Computer, National University of Defense Technology, Changsha 410073, China;School of Computer, National University of Defense Technology, Changsha 410073, China; Key Laboratory of Science and Technology for National Defense of Parallel and Distributed Processing, National University of Defense Technology, Changsha 410073, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 5126   Download 5499
Received:June 15, 2009    Revised:December 07, 2009
> 中文摘要: 针对现有服务选择中服务推荐技术的不足,提出一种基于偏好推荐的服务选择(trustworthy services selection based on preference recommendation,简称TSSPR)方法.首先搜索一组偏好相似的推荐用户,并通过皮尔逊相关系数计算用户的评价相似度,然后基于用户的推荐等级、领域相关度和评价相似度等对用户的推荐信息进行过滤,从而使推荐信息更为可信.模拟实验结果表明,通过正确的参数设置,该方法能够有效地解决推荐算法中冷启动、推荐信息不准确等问题.
中文关键词: Web 服务  服务选择  可信  服务推荐  协同过滤
Abstract:This paper presents a Trustworthy Services Selection Based on Preference Recommendation (TSSPR) method that assists users in selecting the right Web services, according to their own preferences. First, a group of recommenders that have similar preferences are found, and then the similarity rating is computed by using the Pearson correlation method. Second, filtering services based on the user’s recommending level, relative domain degrees, and similarity ratings can improve the quality of recommendations. Experimental results show that given an appropriate setting, this method can effectively solve the weaknesses of recommendation systems, such as sparseness, cold starts, and inaccurate recommendations.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点基础研究发展计划(973)(2005CB321800, 2005CB321801); 国家杰出青年基金(60625203) 国家重点基础研究发展计划(973)(2005CB321800, 2005CB321801); 国家杰出青年基金(60625203)
Foundation items:
Reference text:

朱锐,王怀民,冯大为.基于偏好推荐的可信服务选择.软件学报,2011,22(5):852-864

ZHU Rui,WANG Huai-Min,FENG Da-Wei.Trustworthy Services Selection Based on Preference Recommendation.Journal of Software,2011,22(5):852-864