###
Journal of Software:2011.22(5):1106-1120

三维几何约束系统的等价性分析
黄学良,王波兴,陈立平,黄正东
(华中科技大学 国家CAD 支撑软件工程技术研究中心,湖北 武汉 430074)
Equivalence Analysis of 3D Geometric Constraint Systems
HUANG Xue-Liang,WANG Bo-Xing,CHEN Li-Ping,HUANG Zheng-Dong
(National CAD Support Software Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3326   Download 3241
Received:April 07, 2009    Revised:October 22, 2009
> 中文摘要: 针对过约束、完整约束和欠约束三维几何约束系统的求解问题,提出了等价性分析方法.该方法基于三维几何约束系统的内在等价性,充分挖掘几何领域知识,依据拆解约束闭环、缩减约束闭环和析出约束闭环等原则,采用等价约束替换来处理几何约束闭环问题,优化几何约束图的结构,实现几何约束系统的优化分解.最后用多个实例验证了该方法的正确性和有效性.
Abstract:This paper proposes a 3D geometric constraint solving method, based on equivalence analysis in graph theory, that can handle over-constrained, well-constrained, and under-constrained configurations naturally and efficiently. The basic idea is that there are equivalent geometric constraint systems with different geometric constraint graphs. If the geometric domain knowledge is exploited to transform a geometric constraint system into an equivalent one that has a better geometric constraint graph structure using equivalent constraint substitution, the decomposition of geometric constraint system can be optimized. Therefore, the proposed approach will not depend on the initial geometric constraint graph structure, but on the inherent characteristic of the geometric constraint system. This proposition can usually find the optimal decomposition of the geometric constraint system. Several typical examples have been given to illustrate the correctness and effectiveness of the proposed method.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60736019, 50875092, 60704019, 60874064) 国家自然科学基金(60736019, 50875092, 60704019, 60874064)
Foundation items:
Reference text:

黄学良,王波兴,陈立平,黄正东.三维几何约束系统的等价性分析.软件学报,2011,22(5):1106-1120

HUANG Xue-Liang,WANG Bo-Xing,CHEN Li-Ping,HUANG Zheng-Dong.Equivalence Analysis of 3D Geometric Constraint Systems.Journal of Software,2011,22(5):1106-1120