###
DOI:
Journal of Software:2007.18(7):1553-1562

基于逻辑电路的Petri网化简方法
叶剑虹,宋文,孙世新
(电子科技大学,计算机科学与工程学院,四川,成都,610054;西华大学,数学与计算机学院,四川,成都,610039)
A Reduction Technique of Petri Nets Based on Logic Circuit
YE Jian-Hong,SONG Wen,SUN Shi-Xin
()
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3230   Download 3511
Received:October 08, 2006    Revised:November 30, 2006
> 中文摘要: 已有的Petri网化简方法需将网的局部结构与化简规则作逐一的比对,步骤较为繁琐,并且所提供的方法不适合于带抑止弧的网.采用一种与传统方法不同的化简思路,首先将网划分为若干个最大无圈子网,将每个最大无圈子网表达为若干个逻辑式.用逻辑代数来完成逻辑式的化简,最后将其结果还原为Petri网回嵌到原网中,完成整个网的化简.给出了寻找最大无圈子网、最大无圈子网的化简算法以及相关的证明.该方法将化简范围扩展到了带抑止弧的无回路的网或网的局部.
中文关键词: Petri网  化简  逻辑代数  最大无圈子网
Abstract:In traditional methods, the local structure of Petri net is required to compare with all reduction rules. The process is complicate and does not fit for nets with inhibitor arcs. This paper presents a new reduction method. Firstly, Petri net is divided into several maximal acyclic subnets and each one is expressed with logic form. Then, logic algebra is used to reduce the logic form. Finally, the result is reconstructed and embedded in the original net. This paper establishes a method to find and reduce the maximal acyclic subnets and presents the correlative proofs. This method can be applied to Petri nets or subnets with inhibitor arcs and acyclic.
文章编号:     中图分类号:    文献标志码:
基金项目:Supported by the National Natural Science Foundation of China under Grant No.60473030 (国家自然科学基金); the Fundamental Research Foundation of Science and Technology Bureau of Sichuan Province of China under Grant No.03226125 (四川省科学技术厅应用基础课题基金) Supported by the National Natural Science Foundation of China under Grant No.60473030 (国家自然科学基金); the Fundamental Research Foundation of Science and Technology Bureau of Sichuan Province of China under Grant No.03226125 (四川省科学技术厅应用基础课题基金)
Foundation items:
Reference text:

叶剑虹,宋文,孙世新.基于逻辑电路的Petri网化简方法.软件学报,2007,18(7):1553-1562

YE Jian-Hong,SONG Wen,SUN Shi-Xin.A Reduction Technique of Petri Nets Based on Logic Circuit.Journal of Software,2007,18(7):1553-1562