###
DOI:
Journal of Software:2004.15(2):193-199

一种限定性的双层贝叶斯分类模型
石洪波,王志海,黄厚宽,励晓健
(北京交通大学,计算机与信息技术学院,北京,100044;山西财经大学,信息与管理学院,山西,太原,030006)
A Restricted Double-Level Bayesian Classification Model
SHI Hong-Bo,WANG Zhi-Hai,HUANG Hou-Kuan,LI Xiao-Jian
()
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3625   Download 6650
Received:January 22, 2003    Revised:July 25, 2003
> 中文摘要: 朴素贝叶斯分类模型是一种简单而有效的分类方法,但它的属性独立性假设使其无法表达属性变量间存在的依赖关系,影响了它的分类性能.通过分析贝叶斯分类模型的分类原则以及贝叶斯定理的变异形式,提出了一种基于贝叶斯定理的新的分类模型DLBAN(double-level Bayesian network augmented naive Bayes).该模型通过选择关键属性建立属性之间的依赖关系.将该分类方法与朴素贝叶斯分类器和TAN(tree augmented naive Bayes)分类器进行实验比较.实验结果表明,在大多数数据集上,DLBAN分类方法具有较高的分类正确率.
Abstract:Naive Bayes classifier is a simple and effective classification method, but its attribute independence assumption makes it unable to express the dependence among attributes, and affects its classification performance. On the basis of analyzing the classification principle of Bayesian classification model and a variant of Bayes theorem, a new classification model based on Bayes theorem, DLBAN (double-level Bayesian network augmented naive Bayes), which adds the dependence among attributes by selecting the key attributes, is proposed. DLBAN classifier is compared with Naive Bayes classifier and TAN (tree augmented naive Bayes) classifier by an experiment. Experimental results show this model has higher classification accuracy in most data sets.
文章编号:     中图分类号:    文献标志码:
基金项目:Supported by the Key Science-Technology Project of the National 'Tenth Five-Year-Plan' of China under Grant No.2002BA407B(国家"十五"重点科技攻关项目) Supported by the Key Science-Technology Project of the National 'Tenth Five-Year-Plan' of China under Grant No.2002BA407B(国家"十五"重点科技攻关项目)
Foundation items:
Reference text:

石洪波,王志海,黄厚宽,励晓健.一种限定性的双层贝叶斯分类模型.软件学报,2004,15(2):193-199

SHI Hong-Bo,WANG Zhi-Hai,HUANG Hou-Kuan,LI Xiao-Jian.A Restricted Double-Level Bayesian Classification Model.Journal of Software,2004,15(2):193-199