###
DOI:
Journal of Software:2003.14(5):963-969

基于聚类的位置数据库动态重组
马帅,王腾蛟,唐世渭,杨冬青,高军
(北京大学,计算机科学技术系,北京,100871;北京大学,计算机科学技术系,北京,100871;北京大学,视觉与听觉信息处理国家重点实验室,北京,100871)
Dynamic Reorganization of Location Databases Based on Clustering
MA Shuai,WANG Teng-Jiao,TANG Shi-Wei,YANG Dong-Qing,GAO Jun
()
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3005   Download 2807
Received:July 01, 2002    Revised:July 01, 2002
> 中文摘要: 在无线移动计算环境中,如何合理地组织和存储移动对象(mobile object)的配置信息从而有效地降低查询和更新代价是位置管理(location management)中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.从数据挖掘的角度出发,提出了一种优化位置数据库的解决方案.首先采用一种新的层次聚类算法对移动日志聚类,然后根据聚类的结果对位置数据库动态重组,从而有效地降低了查询和更新代价.
Abstract:How to effectively organize and store the profile of moving objects in a mobile environment, which can effectively lower the paging and update cost, is an important problem in location management. Combining data mining into a mobile environment is a challenging research task, which has broad prospective applications. In this paper, a solution is provided to optimize the placement of location databases from the aspect of data mining. First a new hierarchical clustering algorithm is presented to cluster the moving log, then use the clustering results to dynamically reunite location databases, thus the paging and update cost can be lowered effectively.
文章编号:     中图分类号:    文献标志码:
基金项目:Supported by the National High-Tech Research and Development Plan of China under Grant No.2002AA4Z3440 (国家高技术研究发展计划); the National Grand Fundamental Research 973 Program of China under Grant No.G1999032705 (国家重点基础研究发展规划(973)); the Foundation of the Innova Supported by the National High-Tech Research and Development Plan of China under Grant No.2002AA4Z3440 (国家高技术研究发展计划); the National Grand Fundamental Research 973 Program of China under Grant No.G1999032705 (国家重点基础研究发展规划(973)); the Foundation of the Innova
Foundation items:
Reference text:

马帅,王腾蛟,唐世渭,杨冬青,高军.基于聚类的位置数据库动态重组.软件学报,2003,14(5):963-969

MA Shuai,WANG Teng-Jiao,TANG Shi-Wei,YANG Dong-Qing,GAO Jun.Dynamic Reorganization of Location Databases Based on Clustering.Journal of Software,2003,14(5):963-969