Determination of the Infinite Homography Through Scene Parallel Planes
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The homography induced by the plane at infinity between two images, namely the infinite homography, plays a very important role in 3D computer vision since many vision problems could be substantially simplified by knowing it. Unlike homographies induced by ordinary planes which can usually be determined by correspondences of image points, the infinite homography must be determined indirectly since no real physical points lie on the plane at infinity. In this paper, how to determine the infinite homography through scene parallel planes is studied, and the following two conclusions are proved: (1) If only a pair of parallel planes is present in the scene, the infinite homography can be obtained by solving a 4th order polynomial, and at maximum, four possible solutions exist. (2) If at least two pairs of parallel planes exist in the scene, and if planes in different pairs are not parallel, then the infinite homograpgy can be linearly and uniquely determined. In addition, a geometric interpretation to the above results, and some practical algorithms are also provided. The proposed results in the paper are of interests in camera self-calibration and image based 3D reconstruction under both theoretical and practical standpoints.

    Reference
    Related
    Cited by
Get Citation

孙凤梅,吴福朝,胡占义.由平行平面的投影确定无穷远平面的单应矩阵.软件学报,2003,14(5):936-946

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 01,2002
  • Revised:October 22,2002
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063