(中国科学技术大学电子科学与技术系,安徽合肥 230026)
An Algorithm with Strong Classifying Ability for Discrete HMM Training
FANG Shao wu,DAI Bei qian,LI Xiao han
Chart / table
Similar Articles
Article :Browse 2917   Download 2483
Received:December 28, 1999    Revised:May 18, 2000
> 中文摘要: 提出了一种具有强分类能力的离散HMM(hiddenMarkovmodels)训练算法.该算法利用矢量量化技术将来自不同话者的训练数据进行混合训练,以生成包含各个话者特征的话者特征图案.用该特征图案代替经典的离散HMM中的VQ码本,可以提高观察值符号序列的模式辨识能力,从而提高了离散HMM的分类能力.给出了该方法用于文本有关的话者识别的实验结果,表明该算法可提高系统的识别性能,并要降低HMM对训练集大小的依赖程度,且识别时计算量明显小于经典HMM训练算法,具有较大的实用价值.
Abstract:A discrete-HMM training algorithm which has strong ability of pattern classification is presented in this paper. By VQ (vector quantization) technique, this algorithm trains data from all speakers in mixed mode to generate the speaker characteristic pattern, which includes features of all speakers. By substituting the VQ code\|book in conventional discrete-HMM with characteristic pattern, the ability of pattern classification for observation symbol sequence is enhanced, therefore the classifying ability of discrete-HMM is improved. The experimental results show that the algorithm can improve the system's recognition performance, and reduce the dependence extent of HMM on the scale of training set. Moreover, the calculation quantum of this algorithm in recognition stage is obviously less than that of conventional HMM training algorithm, therefore it has higher practical value.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(69872036) 国家自然科学基金资助项目(69872036)
Foundation items:
Reference text:


FANG Shao wu,DAI Bei qian,LI Xiao han.An Algorithm with Strong Classifying Ability for Discrete HMM Training.Journal of Software,2001,12(10):1540-1543