###
DOI:
Journal of Software:2001.12(8):1190-1196

曲率连续的有理二次样条插值的一种优化方法
张三元,汪国昭
(浙江大学应用数学系浙江杭州 310027 2 浙江大学CAD&CG国家重点实验室浙江杭州 310027 1 浙江大学计算机科学与工程系浙江杭州 310027)
An Optimal Method for Interpolating Curvature Continuity Curves with Rational Quadratic Splines
ZHANG San yuan,WANG Guo zhao
()
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 2928   Download 3422
Received:January 10, 2000    Revised:April 04, 2000
> 中文摘要: 人们通常用有理三次曲线样条来构造整体曲率连续的曲线.提出利用有理二次样条曲线插值整体曲率连续的曲线的一种方法.首先导出了两相邻二次曲线段间曲率连续的拼接条件,然后提出了求解平面上一个闭的点列中每一点处的切线的最优算法.最后给出了闭曲线插值的一些实例以检验方法的有效性.
Abstract:As for curvature continuity curves, they are usually constructed by means of rational cubic curves. A method for interpolating global curvature continuity curves with conic segments is presented in this paper. Firstly, the curvature continuity conditions between two adjacent rational quadratic curve segments are derived. Secondly, an optimal algorithm is presented for solving out the tangent lines at every points of a closed point set in a plane. Finally, several examples are given out to illustrate the effectiveness of this method.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(60073026,19971079);国家重点基础研究发展规划973资助项目(G1998030600) 国家自然科学基金资助项目(60073026,19971079);国家重点基础研究发展规划973资助项目(G1998030600)
Foundation items:
Reference text:

张三元,汪国昭.曲率连续的有理二次样条插值的一种优化方法.软件学报,2001,12(8):1190-1196

ZHANG San yuan,WANG Guo zhao.An Optimal Method for Interpolating Curvature Continuity Curves with Rational Quadratic Splines.Journal of Software,2001,12(8):1190-1196