Journal of Software:2001.12(4):599-606

(中国科学院计算技术研究所,北京 100080)
WANG Shi,GAO Wen,HUANG Tie-jun,MA Ji-yong,LI Jin-tao
Chart / table
Similar Articles
Article :Browse 2732   Download 2703
Received:November 24, 1999    Revised:February 20, 2000
> 中文摘要: 开展在线零售业务存在的问题是,群体用户必须浏览许多无关的页面,才能最终找到自己所需要的商品.解决该问题的一个思路是:建立一个隐马尔可夫模型,通过关联规则发现算法发现关联购买集合;然后通过Viterbi算法求出从首页到一个关联购买集合中心的具有最大被购买概率的一些路径;在这些路径上标注关联购买集合;当处理完所有的关联购买集合之后,通过竞争来决定出现在导航页面上的物品集,最终将导航页合理地变成导航购买页.即站点可以自动根据群体用户的访问购买情况进行自适应.此外,该方法也是一种很好的通过建立隐马尔可夫模型来分析
Abstract:There is a problem in online retail: the conflict between the different interests of all customers to different commodities and the commodity classification structure of Web site. This problem will make most customers access overabundant Web pages. To solve the problem, the Web page data, server data, and marketing data are mined to build a hidden Markov model. The authors use association rule discovery to get the large item set. Viterbi algorithm is used to find some paths that come from the root Web page to the Web page that the center of the large item set is in. This large item set is marked in the nodes that are in the paths. Through these steps, one can calculate all item sets and mark them in these paths. The large item sets will compete in the nodes for the limited space. Through this method the Web site will adjust itself to reduce the total access time of all users. This method can also be used in analysis of paths, advertisements, and reconstructing the Web site.
文章编号:     中图分类号:    文献标志码:
基金项目:国家863高科技发展计划资助项目(863-306-JD06-03-4) 国家863高科技发展计划资助项目(863-306-JD06-03-4)
Foundation items:
Reference text:


WANG Shi,GAO Wen,HUANG Tie-jun,MA Ji-yong,LI Jin-tao.Web数据挖掘;隐马尔可夫模型;关联规则;自适应.Journal of Software,2001,12(4):599-606