###
DOI:
Journal of Software:2001.12(3):435-439

基于广义逆矩阵的Bézier曲线降阶逼近
陈国栋,王国瑾
(浙江大学CAD & CG国家重点实验室,浙江 杭州 310027)
Degree Reduction Approximation of Bézier Curves by Generalized Inverse Matrices
CHEN Guo-dong,WANG Guo-jin
()
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 2752   Download 2983
Received:November 02, 1999    Revised:January 05, 2000
> 中文摘要: 研究了Bézier曲线的降多阶逼近问题.利用Bézier曲线本身的升阶性质,并结合广义逆矩阵的最小二乘理论,给出了一种新的降阶逼近方法.此方法克服了一般降阶方法中每次只能降阶一次的弱点,并且得到了很好的逼近效果.
中文关键词: 升阶  降多阶  逼近  广义逆矩阵
Abstract:The multidegree reduction of Bézier curves is studied in this paper. The elevation property of Bézier curves themselves is combined with the least squares theory of generalized inverse matrices, and a new approximation method of multidegree reduction is presented. This method overcomes the weakness of the general method, which can reduce only one degree for each time, and obtains good approximation effects.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助项目(69673029);浙江省自然科学基金资助项目(698025);国家重点基础研究发展规划资助项目(G1998030600) 国家自然科学基金资助项目(69673029);浙江省自然科学基金资助项目(698025);国家重点基础研究发展规划资助项目(G1998030600)
Foundation items:
Reference text:

陈国栋,王国瑾.基于广义逆矩阵的Bézier曲线降阶逼近.软件学报,2001,12(3):435-439

CHEN Guo-dong,WANG Guo-jin.Degree Reduction Approximation of Bézier Curves by Generalized Inverse Matrices.Journal of Software,2001,12(3):435-439