###
DOI:
Journal of Software:2000.11(2):260-264

近乎最佳的Manhattan型Steiner树近似算法
马军,杨波,马绍汉
(山东大学计算机科学系,济南,250100)
A Near-Optimal Approximation Algorithm for Manhattan Steiner Tree
MA Jun,YANG Bo,MA Shao-han
()
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 2967   Download 2567
Received:August 31, 1998    Revised:March 03, 1999
> 中文摘要: 求解最佳的Manhattan型Steiner树问题(minimum rectilinear Steiner tree,简记为MRST问题)是在VLSI布线、网络通信中所遇到的组合优化问题,同时也是一个NP-难解问题.该文给出对该问题的O(n2)时间复杂性的近似算法.该算法在最坏情况下的近似比严格小于3/2.计算机实验结果表明,所求得的支撑树的平均费用与最佳算法的平均费用仅相差0.8%.该算法稍加修改,可应用到三维或多维的Manhattan空间对Steiner问题求解,且易于在并行与分布式环境下编程实现
Abstract:The minimum rectilinear Steiner tree (MRST) problem is an NP-complete problem which arises in VLSI wiring,network routing and many combinatorial optimization problems.In this paper,an O(n2) time complexity approximation algorithm for MRST is proposed.The approximation ratio of the algorithm is strictly less than 3/2.The computer verification of the algorithm shows that the costs of the produced spanning trees are only 0.8% away from the optimal.In addition,this algorithm can be revised for multidimensional Manhattan space and implemented in parallel/distributed environments easily.
文章编号:     中图分类号:    文献标志码:
基金项目:本文研究得到国家863高科技项目基金(No.863-306-ZT06-01-4)资助. 本文研究得到国家863高科技项目基金(No.863-306-ZT06-01-4)资助.
Foundation items:
Reference text:

马军,杨波,马绍汉.近乎最佳的Manhattan型Steiner树近似算法.软件学报,2000,11(2):260-264

MA Jun,YANG Bo,MA Shao-han.A Near-Optimal Approximation Algorithm for Manhattan Steiner Tree.Journal of Software,2000,11(2):260-264