###
DOI:
Journal of Software:2010.21(zk):349-362

面向股票新闻的情感分类方法
高旸,周莉,张勇,邢春晓,孙一钢,朱先忠
(清华大学 计算机科学与技术系,北京 100084;清华大学 计算机科学与技术系,北京 100084; 清华大学 信息技术研究院,北京 100084; 清华大学 清华信息科学与技术国家实验室(筹),北京 100084;国家图书馆,北京 100084)
Sentiment Classification for Stock News
GAO Yang,ZHOU Li,ZHANG Yong,XING Chun-Xiao,SUN Yi-Gang,ZHU Xian-Zhong
(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Research Institute of Information Technology, Tsinghua University, Beijing 100084, China; Tsinghua National Laboratory for Information Science and Technology, Tsing;National Library of China, Beijing 100084, China)
Abstract
Chart / table
Reference
Similar Articles
Article :Browse 3071   Download 5086
Received:July 01, 2010    Revised:December 10, 2010
> 中文摘要: 互联网新闻资讯对证券市场和投资者有举足轻重的影响,新闻进行情感分类后再展示给用户,可以帮助投资者迅速做出投资决定.从文本分类的基本方法出发,实现了基于N-gram 统计模型的新词发现方法,并将所得结果用于构建中文分词词典和情感词典.同时引入评价理论,并用朴素贝叶斯、K 近邻和支持向量机3 种方法进行股票新闻标题的情感分类实验.所用实验数据来自2009 年“新浪财经”共计23 万余条的新闻标题,结果表明二分类的准确率最高可达82.9%.此外,还实现了一个原型系统用于展示股票新闻的分类结果.
Abstract:Web news articles play an important role in stock market. Sentiment classification of news articles can help the investors make investment decisions more efficiently. This paper implements an approach of Chinese new words detection by using N-gram model and applied the result for Chinese word segmentation and sentiment classification. Appraisal theory is introduced into sentiment analysis and Na?ve Bayes, K-nearest Neighbor and Support Vector Machine are used as classification algorithms. This method is used for a Chinese stock news data set. The best accuracy reaches 82.9% in all experiments. Additionally, it develops a prototype system to demonstrate this work.
文章编号:     中图分类号:    文献标志码:
基金项目:Supported by the National High-Tech Research and Development Plan of China under Grant No.2009AA01Z143 (国家高技术研究发展计划(863)); the Research Foundation of the National Railway Ministry of China under Grant No.20091111068 (铁道部研究基金) Supported by the National High-Tech Research and Development Plan of China under Grant No.2009AA01Z143 (国家高技术研究发展计划(863)); the Research Foundation of the National Railway Ministry of China under Grant No.20091111068 (铁道部研究基金)
Foundation items:
Reference text:

高旸,周莉,张勇,邢春晓,孙一钢,朱先忠.面向股票新闻的情感分类方法.软件学报,2010,21(zk):349-362

GAO Yang,ZHOU Li,ZHANG Yong,XING Chun-Xiao,SUN Yi-Gang,ZHU Xian-Zhong.Sentiment Classification for Stock News.Journal of Software,2010,21(zk):349-362