

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.10, October 2009, pp.2637−2654 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00578 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

蜕变测试和断言检查的比较与实验研究
∗

张震宇 1, 陈荣光 2+, 谢俊谦 1, 胡佩锋 3

1(香港大学 计算机科学系,香港)
2(香港城市大学 电脑科学系,香港)
3(招商银行香港分行,香港)

Experimental Study to Compare the Use of Metamorphic Testing and Assertion Checking

ZHANG Zhen-Yu1, CHAN WK2+, TSE TH1, HU Pei-Feng3

1(Department of Computer Science, The University of Hong Kong, Hong Kong, China)
2(Department of Computer Science, City University of Hong Kong, Hong Kong, China)
3(China Merchants Bank, Hong Kong, China)

+ Corresponding author: E-mail: wkchan@cs.cityu.edu.hk, http://www.cs.cityu.edu.hk/~wkchan/

Zhang Z, Chan WK, Tse TH, Hu P. Experimental study to compare the use of metamorphic testing and
assertion checking. Journal of Software, 2009,20(10):2637−2654. http://www.jos.org.cn/1000-9825/578.htm

Abstract: A test oracle in software testing is a mechanism for checking whether the program under test behaves
correctly for any execution. In some practical situations, oracles can be unavailable or too expensive to apply.
Metamorphic testing (MT) was proposed to alleviate this problem so that software can be delivered under the
time-to-market pressure. However, the effectiveness of MT has not been studied adequately. This paper conducts a
controlled experiment to investigate the cost effectiveness of using MT. The fault detection capability and time cost
of MT are compared with the standard assertion checking method. The results show that MT has potentials to detect
more faults than the assertion checking method. The experimental results also show a trade-off between the two
testing methods: MT can be less efficient but more effective, and can be defined at a coarser level of granularity
than the assertion checking method.
Key words: metamorphic testing; assertion checking; test oracle; controlled experiment; empirical evaluation

摘 要: 在软件测试中,测试预言是一种用于检查程序在测试中是否正常运行的机制.然而在某些实际情况下,还
无法制定测试预言或者难以有效地应用测试预言.针对此类测试预言问题,蜕变测试于近年应运而生,但蜕变测试的

效率问题还没有被充分地加以研究.作者用控制实验的方法研究了使用蜕变测试的成本及效率,进而将蜕变测试和

常用的断言检查两种方法的错误检测率和时间成本进行了比较和分析.实验结果表明,相比于断言检查方法,蜕变测

试具有检测到更多错误的潜力.通过分析蜕变测试的效率和性能,与断言测试相比,蜕变测试的错误检测率更高效而

∗ Supported by the grants of the Research Grants Council of Hong Kong under Grant Nos.111107, 717308 (香港研究资助局); the

Australian Research Council under Grant No.DP0984760 (澳大利亚研究理事会)
A preliminary version of this paper was presented at the 3rd Int’l Workshop on Software Quality Assurance (SOQUA 2006) in

Conjunction with the 14th ACM SIGSOFT Symp. on Foundations of Software Engineering (SIGSOFT 2006/FSE-14)[1].
Received 2008-08-12; Revised 2008-11-10; Accepted 2009-01-15

2638 Journal of Software 软件学报 Vol.20, No.10, October 2009

效率有待提高,可适用于较为粗粒度的测试需求.
关键词: 蜕变测试;断言检查;测试预言;控制实验;实验研究
中图法分类号: TP311 文献标识码: A

1 Introduction

Software testing is a key activity in any software development project. It assures applications by executing
programs over test cases with the intent to reveal failures[2]. To conduct testing, software testers usually evaluate the
test results through an oracle, which is a mechanism for checking whether a program behaves correctly[3]. Many
programs do not have a full specification, and many of them are developed without similar versions for reference. In
these situations, oracles may be unavailable or too expensive to apply. This is known as the test oracle problem[3].
The oracle problem is not limited to the above kind of scenarios. For instance, for programs involving complex
computations (such as partial differential equations[4], graphics-based software[5,6], database applications[7],
large-scale components, web server, or operating systems[7]), their outputs are difficult to verify. In current software
practices, the oracle is often a human tester who checks the testing results manually. The manual checking of
program output acutely limits the efficiency of testing and increases its cost, especially when there is a need to
verify the results of a large number of test cases. Assessing the correctness of program outcomes has, therefore,
been recognized as “one of the most difficult tasks in software testing”[8].

As we shall review in Section 2, metamorphic testing (MT)[4,9−12] and assertion checking[13,14] are techniques to
alleviate the oracle problem. Assertion checking verifies the test result or intermediate states of the program when
executing a test case. It directly confirms the execution behavior of a program in terms of a checking condition of
program states or individual outputs. MT takes another direction, which verifies follow-up test cases based on an
initial set of test cases. Apart from test case generation, MT also helps verify the relations among the results of these
initial test cases and their follow-up test cases. In other words, MT indirectly verifies the behaviors of multiple
program executions in terms of a checking condition of (input and output) data. It would be interesting to compare
the two approaches on their performance in identifying failures. As an analogy, if we view a test case, its execution,
and the output collectively as an entity (as in entity-relationship diagrams), assertion checking verifies the
correctness of individual entities, whereas MT further verifies the correctness of the relationships among entities.

To measure the performance of a testing technique, it is popular in academic research to study its effectiveness.
However, effectiveness and efficiency are complementary so that they give a proper performance picture of a testing
technique. In this paper, we study both dimensions.

There have been various case studies in applying metamorphic testing to different types of programs, ranging
from conventional programs and object-oriented programs, to pervasive programs and web services. Chen, et al.[4]
reported on the testing of programs for solving partial differential equations. They[5] further investigated the
integration of metamorphic testing with fault-based testing and global symbolic evaluation. Gotlieb and Botella[16]
developed an automated framework to check against a class of metamorphic relations. Chan and colleagues applied
metamorphic approach to the unit testing[17] and integration testing[9] of context-sensitive middleware-based
applications. Chan and others[11,18] also developed a metamorphic approach to online testing of service-oriented
software applications. The improvement on the binary classification approach to alleviate the test oracle problem for
graphics-intensive applications has been investigated in Refs.[5,6]. Throughout these studies, both the testing and
the evaluation of experimental results were conducted by the researchers themselves. There is a need for systematic
empirical research on how well MT can be applied in practical and yet generic situations and how effective MT is
compared with other testing strategies.

张震宇 等:蜕变测试和断言检查的比较与实验研究 2639

Like other comparisons of testing strategies such as between control flow and data flow test adequacy
criteria[19] and among different data flow test adequacy criteria[1], controlled experimental evaluations are essential.
They should answer the following research questions: (a) Can testers be trained to apply MT properly? (b) How
does the fault detection effectiveness of MT compare with other effective strategies? (c) What is the time cost to
apply MT? (d) What is the cost to apply MT if some artifacts of MT implementation are faulty?

In this paper, we report and discuss the results in a controlled experiment setting with a view to answering the
above questions. The subject participants were 38 postgraduate students enrolled in an advanced software testing
course. They have completed a bachelor degree in computer science or equivalent. Before doing the experiment,
they were taught the concepts of MT and a reference strategy (namely, assertion checking[13]) to alleviate the oracle
problem. The training sessions for either concept were similar in duration. Three open-source programs were
selected as target programs. The subjects were required to apply both MT and assertion checking strategies to test
these programs independently. We ran their test cases over a representative set of faulty versions of the target
programs to assess the capability of these two testing strategies in detecting faults[5,20]. The raw data were analyzed
with a view to comparing the costs and effectiveness between MT and assertion checking. We further ran test cases
having faulty metamorphic relations over faulty versions of the target programs to assess whether faulty
metamorphic relations may seriously affect the effectiveness of applying MT.

The main contribution of this paper is six-fold: (i) It is the first controlled experiment to compare metamorphic
testing and assertion checking. (ii) The experiment shows that metamorphic testing is more effective than assertion
checking as a means to identify faults. (iii) It provides empirical evidence to resolve the speculation whether
subjects have difficulty formulating metamorphic relations and implementing MT. Indeed, the results of the
experiment show that all subjects manage to propose metamorphic relations for the target programs after a brief
general introduction on MT, and identical or very similar metamorphic relations are proposed by different subjects.
(iv) It shows that there is a tradeoff between metamorphic testing and assertion checking when applying them to
alleviate the test oracle problem. The empirical results indicate that metamorphic testing is worth applying in terms
of time cost whereas assertion checking is more efficient to apply. (v) This paper further reports the first experiment
to evaluate the effectiveness of (correct and faulty) metamorphic relations in MT. The result shows that a test suite
can effectively identify failures from faulty target programs despite the presence of faulty metamorphic relation
implementations. (vi) Our analysis on raw data also indicates that the granularity of using MT is coarser than
assertion checking in failure detection.

The paper is organized as follows: Section 2 reviews the related literature. Section 3 introduces the
fundamental notions and procedures of metamorphic testing. Section 4 describes the controlled experiment, and the
result is presented and discussed in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Many approaches have been proposed to alleviate the test oracle problem. Rather than checking the test output
directly, they usually propose to construct various types of oracle variant to verify the correctness of the program
under test. Chapman[21] suggested that a previous version of a program could be used to verify the correctness of the
current version. It is now a popular practice in regression testing. However, using this approach, testers need to
identify whether the test case is applicable to the previous version.

Weyuker[3] suggested checking whether some identity relations would be preserved by the program under test.
This notion of equivalence has been well-adopted in practice.

Blum and others[22,23] proposed a program checker, which was an algorithm for checking the output of

2640 Journal of Software 软件学报 Vol.20, No.10, October 2009

computation for numerical programs. Their theory was subsequently extended into the theory of self-testing/
correcting[24].

Xie and Memon[25] studied different types of oracle for graphic user interface (GUI) testing. Binder[13]
discussed four categories and eighteen oracle patterns in object-oriented program testing.

Assertion checking[26] is another method to verify the execution results of programs. An assertion, which is
usually embedded directly in the source code of the program under test, is a Boolean expression that verifies
whether the execution of a test case satisfies some necessary properties for correct implementation. Assertions are
supported by many programming languages and are easy to implement. It has been incorporated in the
Microsoft .Net platform. Assertion checking has been widely used in testing. For example, state invariants[13,27],
represented by assertions, can be used to check the stated-based behaviors of a system. Briand, et al.[28] investigated
the effectiveness of using state-invariant assertions as oracles and compared it with the results using precise oracles
for object-oriented programs. It was shown that state-invariant assertions were effective in detecting state-related
errors. Since our target programs are also object-oriented programs, we have chosen assertion checking as the
alternative testing strategy in our experimental comparison. Assertion checking is also popular in unit testing
framework such as JUnit, in which verification of the program states or outputs of a test case can be done during or
after the test execution.

The design by contract methodology[29] uses contracts to construct reliable software. Contracts, which are
made of assertions, take the form of routine pre-conditions, post-conditions, and class invariants coded into the
program under test.

Some researchers have proposed to prepare test specifications, either manually or automatically, to alleviate the
test oracle problem. Memon, et al.[29] assumed that a test specification of internal object interactions was available
and used it to identify nonconformance of the execution traces. This type of approach is common in conformance
testing for telecommunication protocols. Sun, et al.[17] proposed a similar approach to testing the harnesses of
applications. Last and colleagues[30,31] trained pattern classifiers to learn the casual input-output relationships of a
legacy system. They then used the classifiers as test oracles. Chan, et al.[5] further investigated the feasibility of
using pattern classification techniques when the test outputs cannot be accurately determined. Podgurski and
colleagues[32,33] classified failure reports into categories via classifiers, and then refined the classification with the
aim to extract more information to help testers diagnose program failures. Bowring, et al.[34] used a progressive
approach to train a classifier to ease the test oracle problem in regression testing. Chan, et al.[35] used classifiers to
identify different types of behaviors related to the synchronization failures of objects in a multimedia application.

Beydeda[36] proposed to use metamorphic testing as a means to improve the testability of program components.
Wu[37] observed that follow-up test cases can be initial test cases of the next round, and thus, proposes to apply MT
iteratively to utilize metamorphic relations more economically. Chan, et al.[6] proposed a methodology to integrate
MT with the pattern classification technique. Murphy[38] explored the application of metamorphic testing to support
field testing.

3 Preliminaries of Metamorphic Relations and Testing

This section introduces metamorphic testing. As we have discussed in Section 1, metamorphic testing relies on
a checking condition that relates multiple test cases and their results in order to reveal failures. Such a checking
condition is known as a metamorphic relation. In this section, we revisit metamorphic relations and discuss how
they can be used in the metamorphic approach to software testing.

张震宇 等:蜕变测试和断言检查的比较与实验研究 2641

3.1 Metamorphic relations

A metamorphic relation (MR) is a relation over a series of distinct inputs and their corresponding results for
multiple evaluations of a target function[20]. Consider, for instance, the sine function. We have the following
relation: If x2=π−x1, then sin x2=−sin x1. We note from this example that a metamorphic relation consists of two
parts. The first part (denoted by r in the definition below) relates x2 to x1. The second part (denoted by r′) relates the
results of the function. If the MR above is not satisfied for some input, we deem that a failure is revealed.

Definition 1 (metamorphic relation)[10]. Let 〈x1,x2,…,xk〉 be a series of inputs to a function f, where k≥1, and
let 〈f(x1),f(x2),…,f(xk)〉 be the corresponding series of results. Suppose 〈f(xi1),f(xi2),…,f(xim)〉 is a subseries, possibly
an empty subseries, of 〈f(x1),f(x2),…,f(xk)〉. Let 〈xk+1,xk+2,…,xn〉 be another series of inputs to f, where n≥k+1, and let
〈f(xk+1),f(xk+2),…,f(xn)〉 be the corresponding series of results. Suppose, further, that there exists relations r(x1,
x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn) and r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn)) such that r′ must be true whenever r
is satisfied. Here, r and r′ can be any mathematics relation of aforementioned parameters. We say that

MR={〈x1,x2,…,xn,f(x1),f(x2),…,f(xn)〉|r(x1,x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn)→
r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn))}

is a metamorphic relation. When there is no ambiguity, we simply write the metamorphic relation as
MR: If r(x1,x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn) then r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn)).

Furthermore, x1,x2,…,xk are known as initial test cases and xk+1,xk+2,…,xn are known as follow-up test cases.
Similar to assertions in the mathematical sense, metamorphic relations are also necessary properties of the

function to be implemented. They can, therefore, be used to detect inconsistencies in a program. They can be any
relations involving the inputs and outputs of two or more executions of the target program. They may include
inequalities, periodicity properties, convergence properties, subsumption relationships, and other properties.

Intuitively, human testers are needed to study the problem domain related to a target program and formulate
metamorphic relations accordingly. This is akin to requirements engineering, in which humans instead of automatic
requirements engines are necessary for formulating systems requirements. In some domains where the requirements
of an implementation are best specified mathematically, metamorphic relations may readily be identified. Is there a
systematic methodology guiding testers to formulate metamorphic relations like the methodologies that guide
systems analysts to specify requirements? This remains a challenging question. We shall further investigate along
this line in the future. We observe that other researchers are also beginning to formulate important properties in the
form of specifications to facilitate the verification of system behaviors[19].

3.2 Metamorphic testing

In practice, if the program is written by a competent programmer, most test cases will be passed test cases,
which are test cases that do not reveal any failure. These passed test cases have been considered useless in
conventional testing. Metamorphic testing (MT) uses information from such passed test cases, which will be
referred to as initial test cases.

Consider a program p for a target function f in the input domain D. A series of initial test cases T=〈t1,t2,…,tk〉
can be selected according to any test case selection strategy. Executing the program p on T produces outputs p(t1),
p(t2),…,p(tk). When there is a test oracle, the test results can be verified against f(t1),f(t2),…,f(tk). If these results
reveal any failure, testing stops. On the other hand, when there is no test oracle or when no failure is revealed, the
metamorphic testing procedure can continue to be applied to automatically generate follow-up test cases T′={tk+1,
tk+2,…,tn} based on the initial test cases T so that the program can be verified against metamorphic relations.

Definition 2 (metamorphic testing)[10]. Let P be an implementation of a target function f. The metamorphic

2642 Journal of Software 软件学报 Vol.20, No.10, October 2009

testing of the metamorphic relation
MR: If r(x1,x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn), then r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn))

involves the following steps: (i) Given a series of initial test cases 〈x1,x2,…,xk〉 and their respective results
〈P(x1),P(x2),…,P(xk)〉, generate a series of follow-up test cases 〈xk+1,xk+2,…,xn〉 according to the relation r(x1,x2,…,xk,
P(xi1),P(xi2),…,P(xim),xk+1,xk+2,…,xn) over the implementation P. (ii) Check the relation r′(x1,x2,…,xn,P(x1),P(x2),…,
P(xn)) over P. If r′ is false, then the metamorphic testing of MR reveals a failure.

3.3 Metamorphic testing procedure

Gotlieb and Botella[16] developed an automated framework for a class of metamorphic relations. The
framework translates a specification into a constraint logic programming (CLP) program. Test cases can be
automatically generated according to the CLP program using a constraint solving approach. Their framework works
on a subset of the C language, but it is not clear whether the framework is applicable to test cases involving objects.
Since we want to apply MT to object-oriented programs, we adopt the original procedure[39], which is described as
follows:

First, testers identify and formulate metamorphic relations MR1,MR2,…,MRn from the target function f. For
each metamorphic relation MRi, testers construct a function geni to generate follow-up test cases from the initial test
cases. Next, for each metamorphic relation MRi, testers construct a function veri, which will be used to verify
whether multiple inputs and the corresponding outputs satisfy MRi. After that, testers generate a set of initial test
cases T according to a preferred test case selection strategy. Finally, for every test case in T, the test driver invokes
the function geni to generate follow-up test cases and apply the function veri to check whether the test cases satisfy
the given metamorphic relation MRi. If a metamorphic relation MRi is violated by any test case, veri reports that an
error is found in the program under test.

4 Experiment

This section describes the set up of the controlled experiment. It first formulates the research questions to be
investigated and then describes the experimental design and experimental procedure.

4.1 Research questions

The research questions to be investigated are summarized as follows:
(a) Can the subjects properly apply MT after training? Can the subjects identify correct and useful

metamorphic relations from target programs? Can the same metamorphic relations be discovered by
multiple subjects?

(b) Is MT an effective testing method? Does MT have a comparative advantage over other testing strategies
such as assertion checking in terms of the number of mutants detected? To address this question, we shall
use the standard statistical technique of null hypothesis testing.

Null Hypothesis H0: There is no significant difference between MT and assertion checking in
 terms of the number of mutants detected.
Alternative Hypothesis H1: There is a significant difference between MT and assertion checking in terms
 of the number of mutants detected.
We aim at applying the standard concept of the p-value in the Mann-Whitney test to find the confidence level

that H0 should be rejected, with a view to supporting our claim that the difference between MT and assertion
checking is statistically significant rather than by chance.

(a) What is the effort, in terms of time cost, in applying MT?

张震宇 等:蜕变测试和断言检查的比较与实验研究 2643

(b) If an MR is faulty, what is the cost of applying MT (in terms of the number of mutants detected)?

4.2 Design of experiment

Our experiment identifies four independent and three dependent variables. The independent variables are
testing strategies, subjects, target programs, faulty versions of target programs, and faulty versions of metamorphic
relation programs. The dependent variables are time cost, number of metamorphic relations/assertions, and testing
effectiveness in terms of mutation detection ratio. For the variable on testing strategies, we incorporate MT and
assertion checking. In the rest of this section, we describe the other three independent variables. Section 5 will
analyze the results according to the dependent variables.

Subjects: All the 38 subjects were graduate students in computer science or equivalent who attended the
course “Advanced Topics in Software Engineering: Software Testing” at The University of Hong Kong. These
students had at least a bachelor degree in computer science, computer engineering, or electronic engineering. The
majority of them were part-time MSc students with some industrial experience. The rest were MPhil and Ph.D.
students. We controlled that the training sessions of either approach are comparable in duration and in content. The
number of subjects used our controlled experiment is similar to those in other software engineering controlled
experiments. For instance, the experiments in Refs.[40,41] use 44 subjects.

Since differences in software engineering background might affect the students’ capability to apply
metamorphic testing or assertion checking, we conducted a brief survey prior to the experimentation. The survey
asks subjects their experiences in the industrial environment in each of the following four areas: object-oriented
design, Java programming, software testing, and assertion checking.

Figure 1 lists the survey result. The overall survey result showed that most of them had real-life or academic
experience. As most of subjects were knowledgeable about object-oriented design and Java programming, they were
deemed to be competent in the tasks in the controlled experiment. On the other hand, we found a few students
having rather limited experience in software testing and assertion checking. Since they did not have prior concepts
of metamorphic testing either, the experiment did not specifically favor the metamorphic approach.

Fig.1 Experiences of subjects in object-oriented design, Java, testing, and assertions

Target Programs: We used three open-source programs as target programs. All of them were Java programs
selected from real-world software systems.

The first target program Boyer is a program using the Boyer-Moore algorithm to support the applications in
Canadian Mind Products, an online commercial software company (http://mindprod.com/products1.html). The
program returns the index of the first occurrence of a specified pattern within a given text.

The second target program BooleanExpression evaluates Boolean expressions and returns the resulting
Boolean values. For example, the program may evaluate the expression “!(true && false)||true” and returns “true”.

OO design
(months of experience)

>24
months

34%

7~12
months
13%

0~2
months

19%
3~6

months
16%

13~24
months

18%

Java
(months of experience)

>24
months

24%

7~12
months

13%

0~2
months

24%

3~6
months

29%

13~24
months
10%

Testing
(months of experience)

>24
months

8%7~12
months

11%

0~2
months

60%

3~6
months

16%

13~24
months

5%

Assertion
(months of experience)

>24
months

13% 7~12
months

5%

0~2
months

74%

3~6
months

5%

13~24
months

3%

2644 Journal of Software 软件学报 Vol.20, No.10, October 2009

The program is a core part of a popular open-source project jboolexpr (http://sourceforge.net/projects/jboolexpr) in
SourceForge (http://www.sourceforge.net), the largest open-source project website.

The third target program is TxnTableSorter. It is taken from a popular open-source project Eurobudget
(http://eurobudget.sourceforge.net) in the SourceForge website. Eurobudget is an office application written in Java,
similar to Microsoft Money or Quicken.

Table 1 shows the statistics of the three target programs. The first program is a piece of commercial software.
The second program is a core part of a standard library. The third one is selected from real office software with
hundreds of classes and more than 100 000 lines of code in total. All of them are open source. The sizes of these
programs are in line with the sizes of target programs used in typical software testing researches such as Ref.[20], in
which it uses the Siemens suites.

Table 1 Statistics of target programs

Program Number of LOC Number of methods Number of output affecting methods
Boyer 241 16 9

BooleanExpression 231 15 12
TxnTableSorter 281 18 15

Faulty Versions of Target Programs: To investigate the relative effectiveness of metamorphic testing and
assertion checking, we used mutation operators[42] to seed faults to programs. A previous study[20] showed that a set
of well-defined mutation operators can simulate the real environment for testing experiments.

In our experiment, mutants were seeded using the tool muJava[43]. The tool supports two levels of mutation
operators: class level and method level. Class level mutation operators are operators specific to generating faults in

object-oriented programs at the class level. Method level mutation
operators defined in Ref.[26] are operators specific for statement
faults. We only seeded method level mutation operators to the
programs under study because our experiment focused on unit
testing and because this set of operators had been studied
extensively in the software engineering research
community[5,20,26,28,32,44]. Table 2 list all the mutation operators
used in the controlled experiment.

Generally speaking, muJava examines each statement in a
given program and then applies each applicable mutation operator
to generate a variant of the program. In other words, for each

statement and each applicable mutation operator, it produces a single-fault version of the given program. It has been
well-recognized in the software engineering research community that single-fault mutants couple well with
high-order mutants and real faults and using them to conduct test experiment can adequately simulate realism[20,26].
On the other hand, research on finding an adequate subset of mutation operators to replace the entire set is still
going on Ref.[44]. Many software engineering researchers continue to use the full set of mutants constructed from a
tool to conduct test experiments.

A total of 151 mutants were generated by muJava for the class Boyer, 145 for the class BooleanExpression, and
378 for TxnTableSorter. Note that faults were only seeded into the methods supposedly covered by the test cases for
unit testing. Table 3 lists the number of mutants under each category of operators. We created a faulty version for
each mutant. Finally, we used all the 674 (151+145+378) single-fault versions in the controlled experiment.

Table 2 Categories of mutation operators

Category Description
AOD Delete arithmetic operator
AOI Insert arithmetic operator
AOR Replace arithmetic operator
ROR Replace relational operator
COR Replace conditional operators
COI Insert conditional operator
COD Delete conditional operator
SOR Replace shift operator
LOR Replace logical operator
LOI Insert logical operator
LOD Delete logical operator
ASR Replace assignment operators

张震宇 等:蜕变测试和断言检查的比较与实验研究 2645

Table 3 Number of single-fault programs by mutation operator category

Program AOD AOI AOR COD LOI ROR LOR COR COI ASR Total
Boyer 1 85 14 0 24 16 3 2 1 5 151

BooleanExpression 3 86 3 1 22 27 0 3 0 0 145
TxnTableSorter 8 226 16 0 71 43 2 7 5 0 378

4.3 Experimental procedure

Before the experiment, the subjects were given a six-hour training to use MT and assertion checking. We
carefully monitored the time durations so that the time allocated to train either technique was roughly equal to each
other. (We could not have identical durations for both techniques; otherwise, the same testing background such as
the concept of test oracles in general would needlessly be introduced twice to the subjects.) The target programs and
the tasks to be performed were also presented to the subjects. The subjects were briefed about the main functionality
of each target program and the algorithm used, thus simulating the process in real-life in which a tester acquires the
background knowledge of the program under test. They were blind to the use of any mutants in the controlled
experiment. For each program, the subjects were required to apply MT strictly following the procedure described in
Section 3.3, as well as to add assertions to the source code for checking. We did not restrict the number of
metamorphic relations and assertions to be associated with individual target programs. The subjects were told to
develop metamorphic relations and assertions as they considered suitable, with a view to thoroughly test each target
program.

We did not mandate the use of a particular testing case generation strategy, such as all-def-use criterion or
random testing or specification-based approach, for either MT or assertion checking. The subjects were simply
asked to provide adequate test cases for testing the target programs. This avoided the possibility that some particular
test case selection strategy, when applied in large scale, might favor either MT or assertion checking.

We asked the students to submit metamorphic relations, functions to generate follow-up test cases, functions to
verify metamorphic relations, test cases for metamorphic testing, source code with inserted assertions, and test cases
for assertion checking. They were also asked to report the time costs in applying metamorphic testing and assertion
checking. Before testing the faulty versions with these functions, assertions, and test cases, we checked their
submissions carefully to ensure that there was no implementation error.

4.4 Threats to validity

We describe the threats to validity in this section before we present our main results in the next section.
Internal Validity: Internal validity refers to whether the observed effects depend only on the intended

experimental variables. For this experiment, we provided the subjects with all the background materials and
confirmed with them that they had sufficient time to perform all the tasks. On the other hand, we appreciate that
students might be interrupted by minor Internet activities when they performed their tasks. Hence, the time costs
reported by the subjects should be viewed and analyzed conservatively. Furthermore, the subjects did not know the
nature and details of the faults seeded. This measure ensured that their “designed” metamorphic relations and
assertions were unbiased with respect to the seeded faults.

We use test cases provided by our subjects to conduct the experiment. We do not know whether these test cases
may favor assertion checking, metamorphic testing, or neither of them. We do not disclose the purpose of the
experiment to any subjects, and only request them to produce test cases that they consider sufficient for both
metamorphic testing and assertion checking. To address the threat to internal validity, we use all test cases from
different subjects on every applicable MR. Since subjects do not communicate with one another in the experiment,

2646 Journal of Software 软件学报 Vol.20, No.10, October 2009

this setting helps disassociate test cases from particular MRs.
Readers may be concerned whether the target programs can be faulty. We have carefully checked the classes

before the experiment. Furthermore, none of the subjects has reported any errors in the target programs. Another
concern is whether the developed MRs may contain faults. To address this threat, we have run all test cases by all
subjects as well as our own test cases on all these MRs for the target programs. We observe no failure in the
verification exercise. To further address this risk, we have also conducted a verification experiment to explicitly test
the mutants of the implementations of the metamorphic relations.

External Validity: External validity is the degree to which the results can be generalized to the testing of
real-world systems. The programs used in our experiment are from real-life applications. For example, Eurobudget
is widely used and has been downloaded more than 10 000 times from SourceForge. On the other hand, some
real-world programs can be much larger and less well documented than the open-source programs studied. More
future studies may be in order for the testing of large complex systems using the MT method. We use the MR
implementations produced by our subjects. Other testers of other target programs may produce other MR
implementations. Additional experiments should always be helpful in improving the generalization of the results
that we obtain and present in this paper.

We use Java programs in the experiments, and all MR implementations are naturally written in Java. Although
Java programs are widely used in practice, an MR is inherently a property. It may also be intuitive to implement an
MR using a rule-based approach via logic programming. It is not immediately obvious to us whether the use of a
rule-based approach may produce different comparison results.

We use the test cases produced by the subjects. The use of other schemes (such as statement coverage) may
produce different sets of test cases.

Construct Validity: Construct validity refers to whether we are measuring what we intent to measure. We
measure the effectiveness of metamorphic testing and assertion checking via a mutation detection ratio. Mutation
analysis has been used and verified to be reliable for testing experiments that stimulate real fault scenarios for
deterministic, procedural programs (written in C)[20]. The use of mutation detection ratio can be regarded as a
reliable measure of the fault detection capability of a testing technique.

In our experiment, to compare metamorphic testing and assertion checking, we use the same test pool and only
use the method level of mutation operators to produce mutants in procedural program style. Moreover, the target
programs are deterministic; and thus, they produce the same output every time that a program executes a particular
test case. Therefore, the failures shown in the outputs are also deterministic. However, our target programs are in
Java, which is not the same as the C language. The set of mutation operators is not identical to that used by
Andrews, et al.[20]. On the other hand, many testing experiments use mutation analysis as the means to assure the
effectiveness of various testing techniques.

To measure the time cost for applying MT and assertion checking, we use the time spent by individual subjects
on individual target programs. We do not control how a subject conducts their tasks. Thus, a subject may make a
mistake when doing a task, find out a similar mistake when working on another task, and then go back to the former
task to rectify the first mistake. Thus, a preceding task may be over-estimated in terms of the time spent, while the
later task may benefit from the development experience of the preceding task and be under-estimated. We treat this
factor as random noise in the experiment. We measure the times reported by each subject on applying MT and on
applying assertion checking.

张震宇 等:蜕变测试和断言检查的比较与实验研究 2647

5 Experimental Results

This section presents the experimental results of applying metamorphic testing and assertion checking. They
are structured according to the dependent variables presented in the last section.

5.1 Feasibility of MR development and assertion development

A critical and difficult step in applying MT and assertion checking is to develop metamorphic relations and
assertions for the target programs. Table 4 reports on the number of metamorphic relations and assertions identified
by the subjects for the three target programs. The mean numbers of metamorphic relations developed by the subjects
for the respective programs were 2.79, 2.68, and 5.00. The total numbers of distinct metamorphic relations
identified by all subjects for the respective programs were 18, 39, and 25. The mean numbers of assertions for the
respective programs were 6.96, 11.35, and 10.97.

Table 4 Number of metamorphic relations and assertions

No. of metamorphic relations No. of assertions
Program Total

Mean Max Min StdDev Mean Max Min StdDev
Boyer 18 2.79 5 1 1.66 6.96 43 1 8.94

BooleanExpression 39 5.00 12 1 3.01 11.35 49 1 9.69
TxnTableSorter 25 2.68 7 1 1.59 10.97 36 2 10.97

First, we observe that all the subjects could properly create metamorphic relations and assertions after training.
We further inspect their metamorphic relations and assertions, and find that many of the identified artifacts overlap
among subjects. Take Boyer as an example. There are 38 subjects in total. They collectively identify 18 distinct
metamorphic relations, and on average, each subject identifies 2.79 metamorphic relations. In other words, if all the
metamorphic relations identified were distinct, there should be 108 metamorphic relations. It means that, on
average, each distinct metamorphic relation is discovered by six subjects (or 15.7% of the population). We also
observe a similar result for assertion checking. This result is encouraging. It indicates that the identification of
metamorphic relations can be practical and may share among different developers. It further answers another
important research question on whether the same metamorphic relation can be discovered by more than one subject.
The answer is “yes”.

To observe the variations in the feasibility of discovering metamorphic relations and assertions, we further
normalize the standard derivations against the corresponding mean values in Table 4 for each of the programs. The
results are shown in Table 5. We observe that the standard deviations for discovering metamorphic relations are
much larger than those for discovering assertions. In addition, we observe that the normalized standard deviations
for discovering metamorphic relations across the three programs are quite consistent (close to 0.60 in each case). On
the other hand, for assertions, the standard deviations trends vary from 0.20 to 0.30, which indicate a relatively
larger fluctuation among programs. This initial finding may indicate that discovering metamorphic relations can be
less dependent on the type of program being studied than discovering assertions. In other words, it suggests that
there may be some hidden dominant factors (independent of the nature of target programs) governing the discovery
of metamorphic relations. It will be interesting to identify these factors in the future.

On the other hand, we observe from Table 5 that the absolute values of the normalized standard deviations for
discovering assertions are much smaller than those of metamorphic relations. It shows that our subjects produce
more predictable number of assertions. It may give project managers good guidelines to allocate project resources if
they assign their programmers to do assertion checking in their software applications.

2648 Journal of Software 软件学报 Vol.20, No.10, October 2009

Table 5 Normalized standard derivations

Program Metamorphic relation Assertion checking
Boyer 0.59 0.21

BooleanExpression 0.60 0.20
TxnTableSorter 0.59 0.30

5.2 Size and granularity of metamorphic relations and assertions per program

In general, the subjects could identify a larger number of assertions than metamorphic relations. As shown in
Table 4, the maximum number of metamorphic relations discovered by subjects is almost the same as the mean
number of assertions discovered by subjects. This suffices to show that there is a significant difference between the
numbers of artifacts produced by the two testing methods.

We also observe that the subjects’ abilities to identify metamorphic relations and assertions vary. This is
understandable and agrees with the intuition that different developers may have quite diverse programming abilities.
Take BooleanExpression as an example. Some subjects can identify 12 metamorphic relations and 49 assertions,
while some others can only identify one metamorphic relation and one assertion.

We further observe from Table 4 that, for the three target programs, the ratios of the mean number of identified
metamorphic relations to the mean number of identified assertions are 0.40, 0.44, and 0.24, respectively. If the
effectiveness between the use of metamorphic testing and the use of assertion checking to identify failures is
comparable, these ratios indicate that metamorphic relations can achieve a more coarse-grained granularity than
assertions. If so, we believe that MT helps developers raise the level of abstraction more than assertion checking
does. Our data analysis to be presented in the next section will validate whether the effectiveness of the two
methods are comparable.

5.3 Comparison on fault detection capabilities

We use the subjects’ metamorphic relations, assertions, and source and follow-up test cases to test the faulty
versions of the target programs. The mutation detection ratio[20,26,42] is used to compare the fault detection
capabilities of MT and assertion checking strategies. The mutation detection ratio of a test set is defined as the
number of mutants detected by the test set over the total number of mutants[42]. For metamorphic testing, a mutant is
detected if a source test case and follow up test cases executed on the mutant do not satisfy some metamorphic
relations. For assertion checking, a mutant is detected if a mutated statement is executed by a test case to enter an
erroneous state that triggers an assertion statement.

For the sake of fairness, we applied these two methods to the same set of test cases separately. The source and
follow-up test cases from metamorphic testing were both applied to assertion checking.

The average sizes of the test suites (including source and follow-up test cases) used by all students for the three
programs were 19.9, 22.2, and 16.8, respectively. We also analyzed all the mutants manually before testing and
removed the equivalent mutants. There were 19, 18, and 61 equivalent mutants for program Boyer,
BooleanExpression, and TxnTableSorter, respectively. We did not include them when calculating mutation detection
ratios as these mutants cannot be detected by any test cases.

Table 6 reports on the mutation detection ratios for each program using the two testing methods. It shows that
the mutation detection ratios by applying MT ranged from 44% to 93% for program Boyer, from 46% to 89% for
program BooleanExpression, and from 32% to 74% for program TxnTableSorter.

张震宇 等:蜕变测试和断言检查的比较与实验研究 2649

Table 6 Mutation detection ratios for metamorphic testing and assertion checking

Metamorphic testing Assertion checking
Program Mean

(%)
Max
(%)

Min
(%) StdDev

Aggregate
(%)

Mean
(%)

Max
(%)

Min
(%) StdDev

Aggregate
(%)

Result of p-value of
mann-whitney test

Boyer 60 93 44 0.13 98 40 66 27 0.12 81 <0.001

BooleanExpression 63 89 46 0.11 95 39 66 30 0.10 78 <0.001

TxnTableSorter 59 74 32 0.14 83 37 58 22 0.11 63 <0.001

Under the “Aggregate” columns are the percentages of mutants detected by all subjects. For MT, the mutation
detection ratios were 98%, 95%, and 83%, respectively. Each entry was significantly better than the corresponding
mutation detection ratio for assertion checking. This result, again, is encouraging.

The p-value of the standard Mann-Whitney test was less than 0.001 in all cases. Hence, we reject the null
hypothesis H0 on the effectiveness of fault detection at a 99.9% confidence level. In other words, MT may not only
be comparable to assertion checking, but outperforms the latter. We have used the same set of test cases when
applying the Mann-Whitney test.

This setting and hypothesis testing result indicate that the difference is attributed by the ability to violate the
constraints specified via metamorphic relations and those specified via assertion checking. We observe that the
difference between the two testing methods in our experiment is whether the constraint is specified for one
execution or for multiple executions. The former type of constraint is for assertion checking, and the latter type is
for metamorphic relation. In the other words, the result indicates that using the test results of multiple executions to
identify failures collectively is more effective than just using one execution.

Although our empirical results show that metamorphic testing can be effective, there is a need to develop
systematic methods for creating metamorphic relations and assertions (because individual tester’s results were lower
than the aggregated results of all testers in either approach). The average differences between the mean column and
the aggregate column for MT and assertion checking were 41.3% and 35.3%, respectively. The standard derivations
did not differ much statistically. They ranged from 0.10 to 0.14, as shown in Table 6.

5.4 Comparison of time cost

We would like to compare the time costs between metamorphic testing and assertion checking. From the
subjects’ submissions, we found that they spent less time on applying assertion checking than metamorphic testing.

Table 7 shows the statistics of the time costs for applying the respective strategies to the target programs. Each
entry in the column “Smallest Observation” stands for the smallest value (time cost in terms of hours) in the
respective data set. Each entry in the column “Largest Observation” stands for the largest value in the respective
data set. Each entry under “Median” captures the 50th percentile in the data. The entries under “Lower Quartile”
and “Upper Quartile” capture the values of the 25th and 75th percentiles (in the order from small to large) in the
data, respectively. The entries under “Lower Notch” and “Upper Notch” display the variability of the median in the
data set.

Table 7 Statistics of time costs for applying MT and assertion checking

 Smallest
observation

Lower
quartile

Lower
notch Median Upper

notch
Upper

quartile
Largest

observation
MT 0.58 1.73 1.99 2.51 5.01 5.11 9.82 Boyer assertion 0.58 1.03 1.03 1.48 1.99 2.12 2.18
MT 0.32 2.25 2.51 3.28 6.03 8.02 12.71 BooleanExpression assertion 0.45 1.35 1.48 1.99 3.02 5.01 7.77
MT 0.26 2.51 3.02 3.98 6.03 6.99 11.68 TxnTableSorter assertion 0.52 1.03 1.28 1.99 3.02 3.98 6.74

2650 Journal of Software 软件学报 Vol.20, No.10, October 2009

We observe from Table 7 several interesting tradeoffs between MT and assertion checking. First, the smallest
observation in assertion checking is consistently larger than that in MT. Although applying MT is apparently more
complex than assertion checking, this result shows that, for the most effective testers, the effort to design and
implement metamorphic relations is less than the effort to design and implement assertions. Second, for each of the
three target programs, the median and the largest observation in MT are always greater than the corresponding
values in assertion checking. It indicates that designing and implementing MRs is generally more time-consuming
than designing and implementing assertions. Third, from the lower quartiles and upper quartiles in MT and assertion
checking for these programs, we further observe that the time spent on MT varies more drastically than the time on
assertion checking.

Intuitively, many developers have developed skills to understand program logic from source code and are
comfortable in conducting program comprehension. Furthermore, developers are used to modifying an existing
program to implement new changes to the source code. In view of the above intuition, we believe that adding
assertions to source code is a more familiar and handy task for the subjects than formulating and implementing
MRs.

To analyze the differences between these two testing approaches to alleviate the test oracle problem, we further
represent their time costs using box-and-whisker plots. Figure 2 shows the plots for applying the respective
strategies to the target programs. The time cost for MT includes the time to identify and formulate test cases, write
functions to generate follow-up test cases, and write functions to verify the identified metamorphic relations. The
time cost for assertion checking includes the time spent on adding assertions to the source code.

Fig.2 Box-and-Whisker plots of time costs for applying mt and assertion checking

The vertical axis of Fig.2 shows the time cost in number of hours. The bottom and top horizontal lines of each
box indicate the lower and upper quartiles. The whiskers, drawn as dotted vertical lines, show the full range of the
data. The median is drawn as a horizontal line inside each box. A notch is added to each box to show the uncertainty
interval for each median. If two median notches do not overlap, it indicates that there is a statistically significant
difference between the two medians at a 95% confidence level.

For Boyer and TxnTableSorter, there is a significant difference between the times spent in applying
metamorphic testing and assertion checking. The difference is less statistically significant for Boolean¬Expression.
The exact values of the respective notches can be found in Table 7.

The difference in time cost is acceptable for a number of reasons. First, the time costs for MT implementations
include the generation of follow-up test cases, whereas the time costs for assertion checking do not include the
generation of any test cases. Second, some subjects have had prior experience in assertion checking. We believe that
the extra time spent on developing programs to generate follow-up test cases have paid off because, as discussed in
Section 5.2, these (follow-up) test cases have demonstrated to be very useful in detecting failures of the target
programs. Furthermore, although there is a statistically significant difference in time costs (especially if we view

BooleanExpression-
Assertion

BooleanExpression-
MT

TxnTableSorter-
Assertion

TxnTableSorter-
MT

Boyer-
Assertion

Boyer-
MT

12

10

8

6

4

2

0

张震宇 等:蜕变测试和断言检查的比较与实验研究 2651

Table 7 in relative terms), we also note that the actual median difference in absolute terms range between one to two
hours in the experiment.

Figure 2 further indicates that the time cost for applying MT to object-oriented testing at the class level is
acceptable compared to that of assertion checking. When we consolidate the comparisons in Sections 5.2 and 5.3,
we find that MT provides a stronger oracle check with a tradeoff of slightly more time for preparation.

5.5 Comparison of MT with and without faulty MR implementations

As we have highlighted in Section 3.1, an MR is a property that the correct version of a program under test
should exhibit. To apply MT automatically, testers need to execute the implementations of the MRs for the program
under test. In the controlled experiment, these MR implementations are constructed by the subjects. It is crucial to
know whether MT can still be effective if MR implementations can be faulty.

We thus conducted a follow-up experiment to validate whether MT is robust enough if faulty metamorphic
relations are used to detect failures in the subject programs. We used the set of mutation operators of muJava
mentioned above to generate single-fault mutants of the MR implementations. In total, muJava produced 88, 71, and
89 MR mutants for the three subject programs, respectively. If an MR mutant cannot be killed by any test case, we
excluded such a mutant from the follow-up experiment. We also excluded similar target program mutants. We then
selected a test suite of 20 test cases randomly from the test pool for each target program and computed the mutation
detection ratio accordingly. We note that, in this validation experiment, a revealed failure may be a mistake (namely,
a false positive case) produced by a faulty MR implementation, a failure of the faulty target program, or both. We
repeated the experiment by selecting the test suites 10 times.

The result is shown in Table 8. First, if we only use correct MRs to identify failures, the mean fault detection
rate in the validation experiment is close to the mutation detection rate shown in Table 6. It indicates that the results
of the validation experiment are comparable to the above-mentioned experiment that compares MT and assertion
checking. Second, if MR implementations can be faulty, the mean value is much higher (consistently over 90% as
shown in the rightmost column of Table 8). The result indicates that a test suite is likely to detect problems in the
combination of a faulty target program and a set of faulty MRs. This finding is encouraging because MT can still be
reasonably applied even if some MR implementations may be faulty. If a faulty MR implementation can be
debugged successfully, we believe that the failure detection rate of the test suite will drop, as indicated by the
comparison in Table 7. However, fixing the faults in the MR implementations will incur additional time cost. It may
make the difference in time cost between metamorphic testing and assertion checking more noticeable. Thus, it
warrants more study to find the extent that testers should stop further maintenance of a faulty MR implementation in
order to balance the development cost and product quality.

Table 8 Mutation detection ratios for metamorphic testing with and without faulty
metamorphic relation implementations

With correct MR implementations only With both correct and faulty MR
implementations Program

Mean
(%)

Max
(%)

Min
(%) StdDev Median

(%)
Mean
(%)

Max
(%)

Min
(%) StdDev Median

(%)
Boyer 59 100 2 0.25 56 95 100 85 0.03 95

BooleanExpression 72 100 34 0.27 85 91 100 80 0.08 94
TxnTableSorter 66 100 6 0.22 57 91 100 67 0.05 90

5.6 Further discussions on MT

In general, we observe that the more MRs being used, the higher will be the mutation detection ratio. As we
have indicated in Section 5.2, there is a need to propose more systematic methods to construct the implementation

2652 Journal of Software 软件学报 Vol.20, No.10, October 2009

of metamorphic relations. The utilization of an MR implementation also increases as testers increase the number of
initial test cases applicable to the MR. Since the resources in software testing are often limited, it is also worth
investigating the number of test cases adequate for MT.

Moreover, testers may apply a number of metamorphic relations in order to test a program. In general, different
metamorphic relations have non-identical fault detection capabilities. Let us, for instance, analyze the experimental
results of the Boyer program. The subjects have identified 18 metamorphic relations in total. We observe that four
subjects have only identified one and the same metamorphic relation (MR1 in Table 9). The implementation of this
metamorphic relation constructs a follow-up test case by appending an arbitrary string to the string in the initial test
case and reusing the given pattern in the initial test case. It also checks whether the Boyer program over the two test
cases will give the same outputs if the program locates successfully the given pattern in the initial string. The
mutation detection ratios resulting from these MR implementations by the subjects are no more than 60% no matter
how many test cases they used. We also find that some subjects using the other metamorphic relations (MR2 and
MR3 in Table 9) achieve mutation detection ratios higher than 80%, although they only propose four initial test
cases. It indicates that the quality of metamorphic relations can be a key factor in determining the effectiveness of
MT.

Table 9 Examples of metamorphic relations for program Boyer

Index Metamorphic relation
MR1 If (x1=concatenate(x2,x3))∧(find(x2,x4)>−1), then find(x1,x4)=find(x2,x4).
MR2 If (x1=concatenate(x2,x3))∧(find(x2,x4)=−1)∧(find(x3,x4)>−1), then find(x1,x4)≤length(x2)+find(x3,x4).
MR3 If (x1=concatenate(x2,x3))∧(find(x1,x4)=length(x2)), then find(x3,x4)=0.

The function concatenate(x,y) returns the result of concatenating string x and string y. The function find(x,y)
returns the zero-based index of string y within the string x if x contains y; otherwise, it returns −1.

6 Conclusion

This paper has reported a controlled experiment to study the application of metamorphic testing (MT) and
assertion checking as the means to alleviate the test case problem. A main objective is to evaluate whether MT is a
useful and viable strategy and to assess its cost and effectiveness. We choose to compare MT with a popular testing
method, namely, assertion checking. The experiment indicates that, after training, the subjects could apply MT to
test programs effectively. For all the three open-source programs under study, the subjects could identify many
useful metamorphic relations. The results also suggest that MT is a more effective testing strategy than assertion
checking in terms of fault detection capability. The time cost of applying MT is acceptable when compared with
assertion checking. However, assertion checking is more efficient. Our study also reveals that the granularity of
MRs is coarser than that of assertion checking. It may indicate that MRs provide a high level of abstraction for
testers to deal with testing tasks.

Future research includes the following: In our experiments, the subjects must identify metamorphic relations
and develops programs manually to apply MT. It will be desirable to automate, even in part, the formulation and
generation of metamorphic relations. Other future experiments include the impact of experience levels of subjects
on applying MT, and the use of other subjects, programs and MRs. It is also interesting to study how MT integrates
with test case adequacy criteria, and the role of program development environments to lower the barrier to applying
MT in practice. Our empirical study only examines the effectiveness and time cost of metamorphic testing and
assertion checking. We have not formulated the underpinning theory to explain the differences. We hope that our
study provides an initial set of empirical evidence for researchers to explore this inadequately researched and yet
important area.

张震宇 等:蜕变测试和断言检查的比较与实验研究 2653

Acknowledgement We would like to thank Fan Liang of The University of Hong Kong for conducting the
validation experiment.

References:
[1] Hu P, Zhang Z, Chan WK, Tse TH. An empirical comparison between direct and indirect test result checking approaches. In: Proc.

of the 3rd Int’l Workshop on Software Quality Assurance (SOQUA 2006), in conjunction with the 14th ACM SIGSOFT Symp. on
Foundations of Software Engineering (SIGSOFT 2006/FSE-14). New York: ACM Press, 2006. 6−13.

[2] Beizer B. Software Testing Techniques. New York: Van Nostrand Reinhold, 1990.
[3] Weyuker EJ. On testing non-testable programs. The Computer Journal, 1982,25(4):465−470.
[4] Chen TY, Feng J, Tse TH. Metamorphic testing of programs on partial differential equations: A case study. In: Proc. of the 26th

Annual Int’l Computer Software and Applications Conf. (COMPSAC 2002). Los Alamitos: IEEE Computer Society Press, 2002.
327−333.

[5] Chan WK, Cheung SC, Ho JCF, Tse TH. PAT: A pattern classification approach to automatic reference oracles for the testing of
mesh simplification programs. Journal of Systems and Software, 2008. doi: 10.1016/j.jss.2008.07.019

[6] Chan WK, Ho JCF, Tse TH. Piping classification to metamorphic testing: An empirical study towards better effectiveness for the
identification of failures in mesh simplification programs. In: Proc. of the 31st Annual Int’l Computer Software and Applications
Conf. (COMPSAC 2007), Vol.1. Los Alamitos: IEEE Computer Society Press, 2007. 397−404.

[7] Tse TH, Yau SS, Chan WK, Lu H, Chen TY. Testing context-sensitive middleware-based software applications. In: Proc. of the
28th Annual Int’l Computer Software and Applications Conf. (COMPSAC 2004), Vol.1. Los Alamitos: IEEE Computer Society
Press, 2004. 458−465.

[8] Lu H, Chan WK, Tse TH. Testing context-aware middleware-centric programs: A data flow approach and an RFID-based
experimentation. In: Proc. of the 14th ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering (SIGSOFT
2006/FSE-14). New York: ACM Press, 2006. 242−252.

[9] Chan WK, Chen TY, Lu H, Tse TH, Yau SS. A metamorphic approach to integration testing of context-sensitive middleware-based
applications. In: Proc. of the 5th Int’l Conf. on Quality Software (QSIC 2005). Los Alamitos: IEEE Computer Society Press, 2005.
241−249.

[10] Chan WK, Chen TY, Lu H, Tse TH, Yau SS. Integration testing of context-sensitive middleware-based applications: A
metamorphic approach. Int’l Journal of Software Engineering and Knowledge Engineering, 2006,16(5):677−703.

[11] Chan WK, Cheung SC, Leung KRPH. A metamorphic testing approach for online testing of service-oriented software applications.
Int’l Journal of Web Services Research, 2007,4(2):60−80.

[12] Chen TY, Tse TH, Zhou ZQ. Fault-Based testing without the need of oracles. Information and Software Technology, 2003,45(1):
1−9.

[13] Binder RV. Testing Object-Oriented Systems: Models, Patterns, and Tools. Reading: Addison Wesley, 2000.
[14] Taylor RN. Assertions in programming languages. ACM SIGPLAN Notices, 1980,15(1):105−114.
[15] Chen TY, Tse TH, Zhou ZQ. Semi-Proving: An integrated method based on global symbolic evaluation and metamorphic testing.

In: Proc. of the 2002 ACM SIGSOFT Int’l Symp. on Software Testing and Analysis (ISSTA 2002). New York: ACM Press, 2002.
191−195.

[16] Gotlieb A, Botella B. Automated metamorphic testing. In: Proc. of the 27th Annual Int’l Computer Software and Applications Conf.
(COMPSAC 2003). Los Alamitos: IEEE Computer Society Press, 2003. 34−40.

[17] Sun Y, Jones EL. Specification-Driven automated testing of GUI-based Java programs. In: Proc. of the 42nd Annual Southeast
Regional Conf. (ACM-SE 42). New York: ACM Press, 2004. 140−145.

[18] Chan WK, Cheung SC, Leung KRPH. Towards a metamorphic testing methodology for service-oriented software applications. The
1st Int’l Conf. on Services Engineering (SEIW 2005). In: Proc. of the 5th Int’l Conf. on Quality Software (QSIC 2005). Los
Alamitos: IEEE Computer Society Press, 2005. 470−476.

[19] Cobleigh RL, Avrunin GS, Clarke LA. User guidance for creating precise and accessible property specifications. In: Proc. of the
14th ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering (SIGSOFT 2006/FSE-14). New York: ACM Press, 2006.
208−218.

[20] Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments? In: Proc. of the 27th Int’l Conf. on
Software Engineering (ICSE 2005). New York: ACM Press, 2005. 402−411.

[21] Chapman D. A program testing assistant. Communications of the ACM, 1982,25(9):625−634.
[22] Ar S, Blum M, Codenotti B, Gemmell P. Checking approximate computations over the reals. In: Proc. of the 25th Annual ACM

Symp. on Theory of Computing (STOC’93). New York: ACM Press, 1993. 786−795.
[23] Blum M, Kannan S. Designing programs that check their work. Journal of the ACM, 1995,42(1):269−291.
[24] Blum M, Luby M, Rubinfeld R. Self-Testing/correcting with applications to numerical problems. Journal of Computer and System

Sciences, 1993,47(3):549−595.
[25] Xie Q, Memon AM. Designing and comparing automated test oracles for GUI-based software applications. ACM Trans. on

Software Engineering and Methodology, 2007,16(1):Article No.4.
[26] Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C. An experimental determination of sufficient mutant operators. ACM Trans. on

Software Engineering and Methodology, 1996,5(2):99−118.

2654 Journal of Software 软件学报 Vol.20, No.10, October 2009

[27] Helm R, Holland IM, Gangopadhyay D. Contracts: Specifying behavioral compositions in object-oriented systems. In: Proc. of the
5th Annual Conf. on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’90). ACM SIGPLAN Notices,
1990,25(10):169−180.

[28] Briand LC, Di Penta M, Labiche Y. Assessing and improving state-based class testing: A series of experiments. IEEE Trans. on
Software Engineering, 2004,30(11):770−783.

[29] Meyer B. Applying ‘design by contract’. IEEE Computer, 1992,25(10):40−51.
[30] Last M, Friedman M, Kandel A. The data mining approach to automated software testing. In: Proc. of the 9th ACM SIGKDD Int’l

Conf. on Knowledge Discovery and Data Mining (KDD 2003). New York: ACM Press, 2003. 388−396.
[31] Vanmali M, Last M, Kandel A. Using a neural network in the software testing process. Int’l Journal of Intelligent Systems, 2002,

17(1):45−62.
[32] Francis P, Leon D, Minch M, Podgurski A. Tree-Based methods for classifying software failures. In: Proc. of the 15th Int’l Symp.

on Software Reliability Engineering (ISSRE 2004). Los Alamitos: IEEE Computer Society Press, 2004. 451−462.
[33] Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B. Automated support for classifying software failure reports. In:

Proc. of the 25th Int’l Conf. on Software Engineering (ICSE 2003). Los Alamitos: IEEE Computer Society Press, 2003. 465−475.
[34] Bowring JF, Rehg JM, Harrold MJ. Active learning for automatic classification of software behavior. In: Proc. of the 2004 ACM

SIGSOFT Int’l Symp. on Software Testing and Analysis (ISSTA 2004). New York: ACM Press, 2004. 195−205.
[35] Chan WK, Cheng MY, Cheung SC, Tse TH. Automatic goal-oriented classification of failure behaviors for testing XML-based

multimedia software applications: An experimental case study. Journal of Systems and Software, 2006,79(5):602−612.
[36] Beydeda S. Self-Metamorphic-Testing components. In: Proc. of the 30th Annual Int’l Computer Software and Applications Conf.

(COMPSAC 2006), Vol.1. Los Alamitos: IEEE Computer Society Press, 2006. 265−272.
[37] Wu P. Iterative metamorphic testing. In: Proc. of the 29th Annual Int’l Computer Software and Applications Conf. (COMPSAC

2005), Vol.1. Los Alamitos: IEEE Computer Society Press, 2005. 19−24.
[38] Murphy C. Using runtime testing to detect defects in applications without test oracles. In: Companion to Proc. of the 16th ACM

SIGSOFT Int’l Symp. on Foundations of Software Engineering (SIGSOFT 2008/FSE-16). New York: ACM Press, 2008.
[39] Chan FT, Chen TY, Cheung SC, Lau MF, Yiu SM. Application of metamorphic testing in numerical analysis. In: Proc. of the

IASTED Int’l Conf. on Software Engineering (SE’98). Calgary: ACTA Press, 1998. 191−197.
[40] Prechelt L, Unger B, Tichy WF, Brössler P, Votta LG. A controlled experiment in maintenance comparing design patterns to

simpler solutions. IEEE Trans. on Software Engineering, 2001,27(12):1134−1144.
[41] Vokáč M, Tichy W, Sjoberg DIK, Arisholm E, Aldrin M. A controlled experiment comparing the maintainability of program

designed with and without design patterns: A replication in a real programming environment. Empirical Software Engineering,
2004,9(3):149−195.

[42] Howden WE. Weak mutation testing and completeness of test sets. IEEE Trans. on Software Engineering, 1982,SE-8(4):371−379.
[43] Ma YS, Offutt AJ, Kwon YR. MuJava: An automated class mutation system. Software Testing, Verification and Reliability, 2005,

15(2):97−133.
[44] Namin AS, Andrews JH, Murdoch DJ. Sufficient mutation operators for measuring test effectiveness. In: Proc. of the 30th Int’l

Conf. on Software Engineering (ICSE 2008). New York: ACM Press, 2008. 351−360.

ZHANG Zhen-Yu was born in 1979. He is
a Ph.D. candidate at the Department of
Computer Science of the University of Hong
Kong. His current research areas are
software testing, software debugging, and
software engineering issues for wireless
sensor network.

TSE TH was born in 1948. He is a Professor
in Computer Science at The University of
Hong Kong. His research areas are software
testing and debugging. Application areas of
his research include object-oriented software,
pervasive computing, wireless sensor
networks, service-oriented architecture,
concurrent systems, graphics applications and
numerical programs.

CHAN WK was born in 1970. He is an
Assistant Professor at the City University of
Hong Kong and an honorary assistant
professor at the University of Hong Kong.
Currently, he is investigating software
engineering and programming language
issues for software applications on wireless
sensor network, RFID middleware, P2P
network, service-oriented architecture, and
aspect-orientation.

HU Pei-Feng was born in 1979. He received
his Ph.D. degree at the University of Hong
Kong. He has joined China Merchant (Hong
Kong) Bank as a financial analyst since 2007.

