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Abstract:  A test oracle in software testing is a mechanism for checking whether the program under test behaves 
correctly for any execution. In some practical situations, oracles can be unavailable or too expensive to apply. 
Metamorphic testing (MT) was proposed to alleviate this problem so that software can be delivered under the 
time-to-market pressure. However, the effectiveness of MT has not been studied adequately. This paper conducts a 
controlled experiment to investigate the cost effectiveness of using MT. The fault detection capability and time cost 
of MT are compared with the standard assertion checking method. The results show that MT has potentials to detect 
more faults than the assertion checking method. The experimental results also show a trade-off between the two 
testing methods: MT can be less efficient but more effective, and can be defined at a coarser level of granularity 
than the assertion checking method. 
Key words:  metamorphic testing; assertion checking; test oracle; controlled experiment; empirical evaluation 

摘  要: 在软件测试中,测试预言是一种用于检查程序在测试中是否正常运行的机制.然而在某些实际情况下,还
无法制定测试预言或者难以有效地应用测试预言.针对此类测试预言问题,蜕变测试于近年应运而生,但蜕变测试的

效率问题还没有被充分地加以研究.作者用控制实验的方法研究了使用蜕变测试的成本及效率,进而将蜕变测试和

常用的断言检查两种方法的错误检测率和时间成本进行了比较和分析.实验结果表明,相比于断言检查方法,蜕变测

试具有检测到更多错误的潜力.通过分析蜕变测试的效率和性能,与断言测试相比,蜕变测试的错误检测率更高效而
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效率有待提高,可适用于较为粗粒度的测试需求. 
关键词: 蜕变测试;断言检查;测试预言;控制实验;实验研究 
中图法分类号: TP311   文献标识码: A 

1   Introduction 

Software testing is a key activity in any software development project. It assures applications by executing 
programs over test cases with the intent to reveal failures[2]. To conduct testing, software testers usually evaluate the 
test results through an oracle, which is a mechanism for checking whether a program behaves correctly[3]. Many 
programs do not have a full specification, and many of them are developed without similar versions for reference. In 
these situations, oracles may be unavailable or too expensive to apply. This is known as the test oracle problem[3]. 
The oracle problem is not limited to the above kind of scenarios. For instance, for programs involving complex 
computations (such as partial differential equations[4], graphics-based software[5,6], database applications[7], 
large-scale components, web server, or operating systems[7]), their outputs are difficult to verify. In current software 
practices, the oracle is often a human tester who checks the testing results manually. The manual checking of 
program output acutely limits the efficiency of testing and increases its cost, especially when there is a need to 
verify the results of a large number of test cases. Assessing the correctness of program outcomes has, therefore, 
been recognized as “one of the most difficult tasks in software testing”[8]. 

As we shall review in Section 2, metamorphic testing (MT)[4,9−12] and assertion checking[13,14] are techniques to 
alleviate the oracle problem. Assertion checking verifies the test result or intermediate states of the program when 
executing a test case. It directly confirms the execution behavior of a program in terms of a checking condition of 
program states or individual outputs. MT takes another direction, which verifies follow-up test cases based on an 
initial set of test cases. Apart from test case generation, MT also helps verify the relations among the results of these 
initial test cases and their follow-up test cases. In other words, MT indirectly verifies the behaviors of multiple 
program executions in terms of a checking condition of (input and output) data. It would be interesting to compare 
the two approaches on their performance in identifying failures. As an analogy, if we view a test case, its execution, 
and the output collectively as an entity (as in entity-relationship diagrams), assertion checking verifies the 
correctness of individual entities, whereas MT further verifies the correctness of the relationships among entities. 

To measure the performance of a testing technique, it is popular in academic research to study its effectiveness. 
However, effectiveness and efficiency are complementary so that they give a proper performance picture of a testing 
technique. In this paper, we study both dimensions. 

There have been various case studies in applying metamorphic testing to different types of programs, ranging 
from conventional programs and object-oriented programs, to pervasive programs and web services. Chen, et al.[4] 
reported on the testing of programs for solving partial differential equations. They[5] further investigated the 
integration of metamorphic testing with fault-based testing and global symbolic evaluation. Gotlieb and Botella[16] 
developed an automated framework to check against a class of metamorphic relations. Chan and colleagues applied 
metamorphic approach to the unit testing[17] and integration testing[9] of context-sensitive middleware-based 
applications. Chan and others[11,18] also developed a metamorphic approach to online testing of service-oriented 
software applications. The improvement on the binary classification approach to alleviate the test oracle problem for 
graphics-intensive applications has been investigated in Refs.[5,6]. Throughout these studies, both the testing and 
the evaluation of experimental results were conducted by the researchers themselves. There is a need for systematic 
empirical research on how well MT can be applied in practical and yet generic situations and how effective MT is 
compared with other testing strategies. 
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Like other comparisons of testing strategies such as between control flow and data flow test adequacy 
criteria[19] and among different data flow test adequacy criteria[1], controlled experimental evaluations are essential. 
They should answer the following research questions: (a) Can testers be trained to apply MT properly? (b) How 
does the fault detection effectiveness of MT compare with other effective strategies? (c) What is the time cost to 
apply MT? (d) What is the cost to apply MT if some artifacts of MT implementation are faulty? 

In this paper, we report and discuss the results in a controlled experiment setting with a view to answering the 
above questions. The subject participants were 38 postgraduate students enrolled in an advanced software testing 
course. They have completed a bachelor degree in computer science or equivalent. Before doing the experiment, 
they were taught the concepts of MT and a reference strategy (namely, assertion checking[13]) to alleviate the oracle 
problem. The training sessions for either concept were similar in duration. Three open-source programs were 
selected as target programs. The subjects were required to apply both MT and assertion checking strategies to test 
these programs independently. We ran their test cases over a representative set of faulty versions of the target 
programs to assess the capability of these two testing strategies in detecting faults[5,20]. The raw data were analyzed 
with a view to comparing the costs and effectiveness between MT and assertion checking. We further ran test cases 
having faulty metamorphic relations over faulty versions of the target programs to assess whether faulty 
metamorphic relations may seriously affect the effectiveness of applying MT. 

The main contribution of this paper is six-fold: (i) It is the first controlled experiment to compare metamorphic 
testing and assertion checking. (ii) The experiment shows that metamorphic testing is more effective than assertion 
checking as a means to identify faults. (iii) It provides empirical evidence to resolve the speculation whether 
subjects have difficulty formulating metamorphic relations and implementing MT. Indeed, the results of the 
experiment show that all subjects manage to propose metamorphic relations for the target programs after a brief 
general introduction on MT, and identical or very similar metamorphic relations are proposed by different subjects. 
(iv) It shows that there is a tradeoff between metamorphic testing and assertion checking when applying them to 
alleviate the test oracle problem. The empirical results indicate that metamorphic testing is worth applying in terms 
of time cost whereas assertion checking is more efficient to apply. (v) This paper further reports the first experiment 
to evaluate the effectiveness of (correct and faulty) metamorphic relations in MT. The result shows that a test suite 
can effectively identify failures from faulty target programs despite the presence of faulty metamorphic relation 
implementations. (vi) Our analysis on raw data also indicates that the granularity of using MT is coarser than 
assertion checking in failure detection. 

The paper is organized as follows: Section 2 reviews the related literature. Section 3 introduces the 
fundamental notions and procedures of metamorphic testing. Section 4 describes the controlled experiment, and the 
result is presented and discussed in Section 5. Finally, Section 6 concludes the paper. 

2   Related Work 

Many approaches have been proposed to alleviate the test oracle problem. Rather than checking the test output 
directly, they usually propose to construct various types of oracle variant to verify the correctness of the program 
under test. Chapman[21] suggested that a previous version of a program could be used to verify the correctness of the 
current version. It is now a popular practice in regression testing. However, using this approach, testers need to 
identify whether the test case is applicable to the previous version. 

Weyuker[3] suggested checking whether some identity relations would be preserved by the program under test. 
This notion of equivalence has been well-adopted in practice. 

Blum and others[22,23] proposed a program checker, which was an algorithm for checking the output of 
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computation for numerical programs. Their theory was subsequently extended into the theory of self-testing/ 
correcting[24]. 

Xie and Memon[25] studied different types of oracle for graphic user interface (GUI) testing. Binder[13] 
discussed four categories and eighteen oracle patterns in object-oriented program testing. 

Assertion checking[26] is another method to verify the execution results of programs. An assertion, which is 
usually embedded directly in the source code of the program under test, is a Boolean expression that verifies 
whether the execution of a test case satisfies some necessary properties for correct implementation. Assertions are 
supported by many programming languages and are easy to implement. It has been incorporated in the 
Microsoft .Net platform. Assertion checking has been widely used in testing. For example, state invariants[13,27], 
represented by assertions, can be used to check the stated-based behaviors of a system. Briand, et al.[28] investigated 
the effectiveness of using state-invariant assertions as oracles and compared it with the results using precise oracles 
for object-oriented programs. It was shown that state-invariant assertions were effective in detecting state-related 
errors. Since our target programs are also object-oriented programs, we have chosen assertion checking as the 
alternative testing strategy in our experimental comparison. Assertion checking is also popular in unit testing 
framework such as JUnit, in which verification of the program states or outputs of a test case can be done during or 
after the test execution. 

The design by contract methodology[29] uses contracts to construct reliable software. Contracts, which are 
made of assertions, take the form of routine pre-conditions, post-conditions, and class invariants coded into the 
program under test. 

Some researchers have proposed to prepare test specifications, either manually or automatically, to alleviate the 
test oracle problem. Memon, et al.[29] assumed that a test specification of internal object interactions was available 
and used it to identify nonconformance of the execution traces. This type of approach is common in conformance 
testing for telecommunication protocols. Sun, et al.[17] proposed a similar approach to testing the harnesses of 
applications. Last and colleagues[30,31] trained pattern classifiers to learn the casual input-output relationships of a 
legacy system. They then used the classifiers as test oracles. Chan, et al.[5] further investigated the feasibility of 
using pattern classification techniques when the test outputs cannot be accurately determined. Podgurski and 
colleagues[32,33] classified failure reports into categories via classifiers, and then refined the classification with the 
aim to extract more information to help testers diagnose program failures. Bowring, et al.[34] used a progressive 
approach to train a classifier to ease the test oracle problem in regression testing. Chan, et al.[35] used classifiers to 
identify different types of behaviors related to the synchronization failures of objects in a multimedia application. 

Beydeda[36] proposed to use metamorphic testing as a means to improve the testability of program components. 
Wu[37] observed that follow-up test cases can be initial test cases of the next round, and thus, proposes to apply MT 
iteratively to utilize metamorphic relations more economically. Chan, et al.[6] proposed a methodology to integrate 
MT with the pattern classification technique. Murphy[38] explored the application of metamorphic testing to support 
field testing. 

3   Preliminaries of Metamorphic Relations and Testing 

This section introduces metamorphic testing. As we have discussed in Section 1, metamorphic testing relies on 
a checking condition that relates multiple test cases and their results in order to reveal failures. Such a checking 
condition is known as a metamorphic relation. In this section, we revisit metamorphic relations and discuss how 
they can be used in the metamorphic approach to software testing. 



 

 

 

张震宇 等:蜕变测试和断言检查的比较与实验研究 2641 

 

3.1   Metamorphic relations 

A metamorphic relation (MR) is a relation over a series of distinct inputs and their corresponding results for 
multiple evaluations of a target function[20]. Consider, for instance, the sine function. We have the following 
relation: If x2=π−x1, then sin x2=−sin x1. We note from this example that a metamorphic relation consists of two 
parts. The first part (denoted by r in the definition below) relates x2 to x1. The second part (denoted by r′) relates the 
results of the function. If the MR above is not satisfied for some input, we deem that a failure is revealed. 

Definition 1 (metamorphic relation)[10]. Let 〈x1,x2,…,xk〉 be a series of inputs to a function f, where k≥1, and 
let 〈f(x1),f(x2),…,f(xk)〉 be the corresponding series of results. Suppose 〈f(xi1),f(xi2),…,f(xim)〉 is a subseries, possibly 
an empty subseries, of 〈f(x1),f(x2),…,f(xk)〉. Let 〈xk+1,xk+2,…,xn〉 be another series of inputs to f, where n≥k+1, and let 
〈f(xk+1),f(xk+2),…,f(xn)〉 be the corresponding series of results. Suppose, further, that there exists relations r(x1, 
x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn) and r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn)) such that r′ must be true whenever r 
is satisfied. Here, r and r′ can be any mathematics relation of aforementioned parameters. We say that 

MR={〈x1,x2,…,xn,f(x1),f(x2),…,f(xn)〉|r(x1,x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn)→ 
r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn))} 

is a metamorphic relation. When there is no ambiguity, we simply write the metamorphic relation as 
MR: If r(x1,x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn) then r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn)). 

Furthermore, x1,x2,…,xk are known as initial test cases and xk+1,xk+2,…,xn are known as follow-up test cases. 
Similar to assertions in the mathematical sense, metamorphic relations are also necessary properties of the 

function to be implemented. They can, therefore, be used to detect inconsistencies in a program. They can be any 
relations involving the inputs and outputs of two or more executions of the target program. They may include 
inequalities, periodicity properties, convergence properties, subsumption relationships, and other properties. 

Intuitively, human testers are needed to study the problem domain related to a target program and formulate 
metamorphic relations accordingly. This is akin to requirements engineering, in which humans instead of automatic 
requirements engines are necessary for formulating systems requirements. In some domains where the requirements 
of an implementation are best specified mathematically, metamorphic relations may readily be identified. Is there a 
systematic methodology guiding testers to formulate metamorphic relations like the methodologies that guide 
systems analysts to specify requirements? This remains a challenging question. We shall further investigate along 
this line in the future. We observe that other researchers are also beginning to formulate important properties in the 
form of specifications to facilitate the verification of system behaviors[19]. 

3.2   Metamorphic testing 

In practice, if the program is written by a competent programmer, most test cases will be passed test cases, 
which are test cases that do not reveal any failure. These passed test cases have been considered useless in 
conventional testing. Metamorphic testing (MT) uses information from such passed test cases, which will be 
referred to as initial test cases. 

Consider a program p for a target function f in the input domain D. A series of initial test cases T=〈t1,t2,…,tk〉 
can be selected according to any test case selection strategy. Executing the program p on T produces outputs p(t1), 
p(t2),…,p(tk). When there is a test oracle, the test results can be verified against f(t1),f(t2),…,f(tk). If these results 
reveal any failure, testing stops. On the other hand, when there is no test oracle or when no failure is revealed, the 
metamorphic testing procedure can continue to be applied to automatically generate follow-up test cases T′={tk+1, 
tk+2,…,tn} based on the initial test cases T so that the program can be verified against metamorphic relations. 

Definition 2 (metamorphic testing)[10]. Let P be an implementation of a target function f. The metamorphic 
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testing of the metamorphic relation 
MR: If r(x1,x2,…,xk,f(xi1),f(xi2),…,f(xim),xk+1,xk+2,…,xn), then r′(x1,x2,…,xn,f(x1),f(x2),…,f(xn)) 

involves the following steps: (i) Given a series of initial test cases 〈x1,x2,…,xk〉 and their respective results 
〈P(x1),P(x2),…,P(xk)〉, generate a series of follow-up test cases 〈xk+1,xk+2,…,xn〉 according to the relation r(x1,x2,…,xk, 
P(xi1),P(xi2),…,P(xim),xk+1,xk+2,…,xn) over the implementation P. (ii) Check the relation r′(x1,x2,…,xn,P(x1),P(x2),…, 
P(xn)) over P. If r′ is false, then the metamorphic testing of MR reveals a failure. 

3.3   Metamorphic testing procedure 

Gotlieb and Botella[16] developed an automated framework for a class of metamorphic relations. The 
framework translates a specification into a constraint logic programming (CLP) program. Test cases can be 
automatically generated according to the CLP program using a constraint solving approach. Their framework works 
on a subset of the C language, but it is not clear whether the framework is applicable to test cases involving objects. 
Since we want to apply MT to object-oriented programs, we adopt the original procedure[39], which is described as 
follows: 

First, testers identify and formulate metamorphic relations MR1,MR2,…,MRn from the target function f. For 
each metamorphic relation MRi, testers construct a function geni to generate follow-up test cases from the initial test 
cases. Next, for each metamorphic relation MRi, testers construct a function veri, which will be used to verify 
whether multiple inputs and the corresponding outputs satisfy MRi. After that, testers generate a set of initial test 
cases T according to a preferred test case selection strategy. Finally, for every test case in T, the test driver invokes 
the function geni to generate follow-up test cases and apply the function veri to check whether the test cases satisfy 
the given metamorphic relation MRi. If a metamorphic relation MRi is violated by any test case, veri reports that an 
error is found in the program under test. 

4   Experiment 

This section describes the set up of the controlled experiment. It first formulates the research questions to be 
investigated and then describes the experimental design and experimental procedure. 

4.1   Research questions 

The research questions to be investigated are summarized as follows: 
(a) Can the subjects properly apply MT after training? Can the subjects identify correct and useful 

metamorphic relations from target programs? Can the same metamorphic relations be discovered by 
multiple subjects? 

(b) Is MT an effective testing method? Does MT have a comparative advantage over other testing strategies 
such as assertion checking in terms of the number of mutants detected? To address this question, we shall 
use the standard statistical technique of null hypothesis testing. 

Null Hypothesis H0:   There is no significant difference between MT and assertion checking in 
       terms of the number of mutants detected. 
Alternative Hypothesis H1:  There is a significant difference between MT and assertion checking in terms 
       of the number of mutants detected. 
We aim at applying the standard concept of the p-value in the Mann-Whitney test to find the confidence level 

that H0 should be rejected, with a view to supporting our claim that the difference between MT and assertion 
checking is statistically significant rather than by chance. 

(a) What is the effort, in terms of time cost, in applying MT? 
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(b) If an MR is faulty, what is the cost of applying MT (in terms of the number of mutants detected)? 

4.2   Design of experiment 

Our experiment identifies four independent and three dependent variables. The independent variables are 
testing strategies, subjects, target programs, faulty versions of target programs, and faulty versions of metamorphic 
relation programs. The dependent variables are time cost, number of metamorphic relations/assertions, and testing 
effectiveness in terms of mutation detection ratio. For the variable on testing strategies, we incorporate MT and 
assertion checking. In the rest of this section, we describe the other three independent variables. Section 5 will 
analyze the results according to the dependent variables. 

Subjects: All the 38 subjects were graduate students in computer science or equivalent who attended the 
course “Advanced Topics in Software Engineering: Software Testing” at The University of Hong Kong. These 
students had at least a bachelor degree in computer science, computer engineering, or electronic engineering. The 
majority of them were part-time MSc students with some industrial experience. The rest were MPhil and Ph.D. 
students. We controlled that the training sessions of either approach are comparable in duration and in content. The 
number of subjects used our controlled experiment is similar to those in other software engineering controlled 
experiments. For instance, the experiments in Refs.[40,41] use 44 subjects. 

Since differences in software engineering background might affect the students’ capability to apply 
metamorphic testing or assertion checking, we conducted a brief survey prior to the experimentation. The survey 
asks subjects their experiences in the industrial environment in each of the following four areas: object-oriented 
design, Java programming, software testing, and assertion checking. 

Figure 1 lists the survey result. The overall survey result showed that most of them had real-life or academic 
experience. As most of subjects were knowledgeable about object-oriented design and Java programming, they were 
deemed to be competent in the tasks in the controlled experiment. On the other hand, we found a few students 
having rather limited experience in software testing and assertion checking. Since they did not have prior concepts 
of metamorphic testing either, the experiment did not specifically favor the metamorphic approach. 

 
 
 
 
 
 
 
 
 

Fig.1  Experiences of subjects in object-oriented design, Java, testing, and assertions 

Target Programs: We used three open-source programs as target programs. All of them were Java programs 
selected from real-world software systems. 

The first target program Boyer is a program using the Boyer-Moore algorithm to support the applications in 
Canadian Mind Products, an online commercial software company (http://mindprod.com/products1.html). The 
program returns the index of the first occurrence of a specified pattern within a given text. 

The second target program BooleanExpression evaluates Boolean expressions and returns the resulting 
Boolean values. For example, the program may evaluate the expression “!(true && false)||true” and returns “true”. 
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The program is a core part of a popular open-source project jboolexpr (http://sourceforge.net/projects/jboolexpr) in 
SourceForge (http://www.sourceforge.net), the largest open-source project website. 

The third target program is TxnTableSorter. It is taken from a popular open-source project Eurobudget 
(http://eurobudget.sourceforge.net) in the SourceForge website. Eurobudget is an office application written in Java, 
similar to Microsoft Money or Quicken. 

Table 1 shows the statistics of the three target programs. The first program is a piece of commercial software. 
The second program is a core part of a standard library. The third one is selected from real office software with 
hundreds of classes and more than 100 000 lines of code in total. All of them are open source. The sizes of these 
programs are in line with the sizes of target programs used in typical software testing researches such as Ref.[20], in 
which it uses the Siemens suites. 

Table 1  Statistics of target programs 

Program Number of LOC Number of methods Number of output affecting methods 
Boyer 241 16 9 

BooleanExpression 231 15 12 
TxnTableSorter 281 18 15 

Faulty Versions of Target Programs: To investigate the relative effectiveness of metamorphic testing and 
assertion checking, we used mutation operators[42] to seed faults to programs. A previous study[20] showed that a set 
of well-defined mutation operators can simulate the real environment for testing experiments. 

In our experiment, mutants were seeded using the tool muJava[43]. The tool supports two levels of mutation 
operators: class level and method level. Class level mutation operators are operators specific to generating faults in 

object-oriented programs at the class level. Method level mutation 
operators defined in Ref.[26] are operators specific for statement 
faults. We only seeded method level mutation operators to the 
programs under study because our experiment focused on unit 
testing and because this set of operators had been studied 
extensively in the software engineering research 
community[5,20,26,28,32,44]. Table 2 list all the mutation operators 
used in the controlled experiment. 

Generally speaking, muJava examines each statement in a 
given program and then applies each applicable mutation operator 
to generate a variant of the program. In other words, for each 

statement and each applicable mutation operator, it produces a single-fault version of the given program. It has been 
well-recognized in the software engineering research community that single-fault mutants couple well with 
high-order mutants and real faults and using them to conduct test experiment can adequately simulate realism[20,26]. 
On the other hand, research on finding an adequate subset of mutation operators to replace the entire set is still 
going on Ref.[44]. Many software engineering researchers continue to use the full set of mutants constructed from a 
tool to conduct test experiments. 

A total of 151 mutants were generated by muJava for the class Boyer, 145 for the class BooleanExpression, and 
378 for TxnTableSorter. Note that faults were only seeded into the methods supposedly covered by the test cases for 
unit testing. Table 3 lists the number of mutants under each category of operators. We created a faulty version for 
each mutant. Finally, we used all the 674 (151+145+378) single-fault versions in the controlled experiment. 

 

Table 2  Categories of mutation operators

Category Description 
AOD Delete arithmetic operator 
AOI Insert arithmetic operator 
AOR Replace arithmetic operator 
ROR Replace relational operator 
COR Replace conditional operators 
COI Insert conditional operator 
COD Delete conditional operator 
SOR Replace shift operator 
LOR Replace logical operator 
LOI Insert logical operator 
LOD Delete logical operator 
ASR Replace assignment operators 
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Table 3  Number of single-fault programs by mutation operator category 

Program AOD AOI AOR COD LOI ROR LOR COR COI ASR Total 
Boyer 1 85 14 0 24 16 3 2 1 5 151 

BooleanExpression 3 86 3 1 22 27 0 3 0 0 145 
TxnTableSorter 8 226 16 0 71 43 2 7 5 0 378 

 

4.3   Experimental procedure 

Before the experiment, the subjects were given a six-hour training to use MT and assertion checking. We 
carefully monitored the time durations so that the time allocated to train either technique was roughly equal to each 
other. (We could not have identical durations for both techniques; otherwise, the same testing background such as 
the concept of test oracles in general would needlessly be introduced twice to the subjects.) The target programs and 
the tasks to be performed were also presented to the subjects. The subjects were briefed about the main functionality 
of each target program and the algorithm used, thus simulating the process in real-life in which a tester acquires the 
background knowledge of the program under test. They were blind to the use of any mutants in the controlled 
experiment. For each program, the subjects were required to apply MT strictly following the procedure described in 
Section 3.3, as well as to add assertions to the source code for checking. We did not restrict the number of 
metamorphic relations and assertions to be associated with individual target programs. The subjects were told to 
develop metamorphic relations and assertions as they considered suitable, with a view to thoroughly test each target 
program. 

We did not mandate the use of a particular testing case generation strategy, such as all-def-use criterion or 
random testing or specification-based approach, for either MT or assertion checking. The subjects were simply 
asked to provide adequate test cases for testing the target programs. This avoided the possibility that some particular 
test case selection strategy, when applied in large scale, might favor either MT or assertion checking. 

We asked the students to submit metamorphic relations, functions to generate follow-up test cases, functions to 
verify metamorphic relations, test cases for metamorphic testing, source code with inserted assertions, and test cases 
for assertion checking. They were also asked to report the time costs in applying metamorphic testing and assertion 
checking. Before testing the faulty versions with these functions, assertions, and test cases, we checked their 
submissions carefully to ensure that there was no implementation error. 

4.4   Threats to validity 

We describe the threats to validity in this section before we present our main results in the next section. 
Internal Validity: Internal validity refers to whether the observed effects depend only on the intended 

experimental variables. For this experiment, we provided the subjects with all the background materials and 
confirmed with them that they had sufficient time to perform all the tasks. On the other hand, we appreciate that 
students might be interrupted by minor Internet activities when they performed their tasks. Hence, the time costs 
reported by the subjects should be viewed and analyzed conservatively. Furthermore, the subjects did not know the 
nature and details of the faults seeded. This measure ensured that their “designed” metamorphic relations and 
assertions were unbiased with respect to the seeded faults. 

We use test cases provided by our subjects to conduct the experiment. We do not know whether these test cases 
may favor assertion checking, metamorphic testing, or neither of them. We do not disclose the purpose of the 
experiment to any subjects, and only request them to produce test cases that they consider sufficient for both 
metamorphic testing and assertion checking. To address the threat to internal validity, we use all test cases from 
different subjects on every applicable MR. Since subjects do not communicate with one another in the experiment, 
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this setting helps disassociate test cases from particular MRs. 
Readers may be concerned whether the target programs can be faulty. We have carefully checked the classes 

before the experiment. Furthermore, none of the subjects has reported any errors in the target programs. Another 
concern is whether the developed MRs may contain faults. To address this threat, we have run all test cases by all 
subjects as well as our own test cases on all these MRs for the target programs. We observe no failure in the 
verification exercise. To further address this risk, we have also conducted a verification experiment to explicitly test 
the mutants of the implementations of the metamorphic relations. 

External Validity: External validity is the degree to which the results can be generalized to the testing of 
real-world systems. The programs used in our experiment are from real-life applications. For example, Eurobudget 
is widely used and has been downloaded more than 10 000 times from SourceForge. On the other hand, some 
real-world programs can be much larger and less well documented than the open-source programs studied. More 
future studies may be in order for the testing of large complex systems using the MT method. We use the MR 
implementations produced by our subjects. Other testers of other target programs may produce other MR 
implementations. Additional experiments should always be helpful in improving the generalization of the results 
that we obtain and present in this paper. 

We use Java programs in the experiments, and all MR implementations are naturally written in Java. Although 
Java programs are widely used in practice, an MR is inherently a property. It may also be intuitive to implement an 
MR using a rule-based approach via logic programming. It is not immediately obvious to us whether the use of a 
rule-based approach may produce different comparison results. 

We use the test cases produced by the subjects. The use of other schemes (such as statement coverage) may 
produce different sets of test cases. 

Construct Validity: Construct validity refers to whether we are measuring what we intent to measure. We 
measure the effectiveness of metamorphic testing and assertion checking via a mutation detection ratio. Mutation 
analysis has been used and verified to be reliable for testing experiments that stimulate real fault scenarios for 
deterministic, procedural programs (written in C)[20]. The use of mutation detection ratio can be regarded as a 
reliable measure of the fault detection capability of a testing technique. 

In our experiment, to compare metamorphic testing and assertion checking, we use the same test pool and only 
use the method level of mutation operators to produce mutants in procedural program style. Moreover, the target 
programs are deterministic; and thus, they produce the same output every time that a program executes a particular 
test case. Therefore, the failures shown in the outputs are also deterministic. However, our target programs are in 
Java, which is not the same as the C language. The set of mutation operators is not identical to that used by 
Andrews, et al.[20]. On the other hand, many testing experiments use mutation analysis as the means to assure the 
effectiveness of various testing techniques. 

To measure the time cost for applying MT and assertion checking, we use the time spent by individual subjects 
on individual target programs. We do not control how a subject conducts their tasks. Thus, a subject may make a 
mistake when doing a task, find out a similar mistake when working on another task, and then go back to the former 
task to rectify the first mistake. Thus, a preceding task may be over-estimated in terms of the time spent, while the 
later task may benefit from the development experience of the preceding task and be under-estimated. We treat this 
factor as random noise in the experiment. We measure the times reported by each subject on applying MT and on 
applying assertion checking. 
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5   Experimental Results 

This section presents the experimental results of applying metamorphic testing and assertion checking. They 
are structured according to the dependent variables presented in the last section. 

5.1   Feasibility of MR development and assertion development 

A critical and difficult step in applying MT and assertion checking is to develop metamorphic relations and 
assertions for the target programs. Table 4 reports on the number of metamorphic relations and assertions identified 
by the subjects for the three target programs. The mean numbers of metamorphic relations developed by the subjects 
for the respective programs were 2.79, 2.68, and 5.00. The total numbers of distinct metamorphic relations 
identified by all subjects for the respective programs were 18, 39, and 25. The mean numbers of assertions for the 
respective programs were 6.96, 11.35, and 10.97. 

Table 4  Number of metamorphic relations and assertions 

No. of metamorphic relations No. of assertions 
Program Total 

Mean Max Min StdDev Mean Max Min StdDev 
Boyer 18 2.79 5 1 1.66 6.96 43 1 8.94 

BooleanExpression 39 5.00 12 1 3.01 11.35 49 1 9.69 
TxnTableSorter 25 2.68 7 1 1.59 10.97 36 2 10.97 

First, we observe that all the subjects could properly create metamorphic relations and assertions after training. 
We further inspect their metamorphic relations and assertions, and find that many of the identified artifacts overlap 
among subjects. Take Boyer as an example. There are 38 subjects in total. They collectively identify 18 distinct 
metamorphic relations, and on average, each subject identifies 2.79 metamorphic relations. In other words, if all the 
metamorphic relations identified were distinct, there should be 108 metamorphic relations. It means that, on 
average, each distinct metamorphic relation is discovered by six subjects (or 15.7% of the population). We also 
observe a similar result for assertion checking. This result is encouraging. It indicates that the identification of 
metamorphic relations can be practical and may share among different developers. It further answers another 
important research question on whether the same metamorphic relation can be discovered by more than one subject. 
The answer is “yes”. 

To observe the variations in the feasibility of discovering metamorphic relations and assertions, we further 
normalize the standard derivations against the corresponding mean values in Table 4 for each of the programs. The 
results are shown in Table 5. We observe that the standard deviations for discovering metamorphic relations are 
much larger than those for discovering assertions. In addition, we observe that the normalized standard deviations 
for discovering metamorphic relations across the three programs are quite consistent (close to 0.60 in each case). On 
the other hand, for assertions, the standard deviations trends vary from 0.20 to 0.30, which indicate a relatively 
larger fluctuation among programs. This initial finding may indicate that discovering metamorphic relations can be 
less dependent on the type of program being studied than discovering assertions. In other words, it suggests that 
there may be some hidden dominant factors (independent of the nature of target programs) governing the discovery 
of metamorphic relations. It will be interesting to identify these factors in the future. 

On the other hand, we observe from Table 5 that the absolute values of the normalized standard deviations for 
discovering assertions are much smaller than those of metamorphic relations. It shows that our subjects produce 
more predictable number of assertions. It may give project managers good guidelines to allocate project resources if 
they assign their programmers to do assertion checking in their software applications. 
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Table 5  Normalized standard derivations 

Program Metamorphic relation Assertion checking
Boyer 0.59 0.21 

BooleanExpression 0.60 0.20 
TxnTableSorter 0.59 0.30 

 

5.2   Size and granularity of metamorphic relations and assertions per program 

In general, the subjects could identify a larger number of assertions than metamorphic relations. As shown in 
Table 4, the maximum number of metamorphic relations discovered by subjects is almost the same as the mean 
number of assertions discovered by subjects. This suffices to show that there is a significant difference between the 
numbers of artifacts produced by the two testing methods. 

We also observe that the subjects’ abilities to identify metamorphic relations and assertions vary. This is 
understandable and agrees with the intuition that different developers may have quite diverse programming abilities. 
Take BooleanExpression as an example. Some subjects can identify 12 metamorphic relations and 49 assertions, 
while some others can only identify one metamorphic relation and one assertion. 

We further observe from Table 4 that, for the three target programs, the ratios of the mean number of identified 
metamorphic relations to the mean number of identified assertions are 0.40, 0.44, and 0.24, respectively. If the 
effectiveness between the use of metamorphic testing and the use of assertion checking to identify failures is 
comparable, these ratios indicate that metamorphic relations can achieve a more coarse-grained granularity than 
assertions. If so, we believe that MT helps developers raise the level of abstraction more than assertion checking 
does. Our data analysis to be presented in the next section will validate whether the effectiveness of the two 
methods are comparable. 

5.3   Comparison on fault detection capabilities 

We use the subjects’ metamorphic relations, assertions, and source and follow-up test cases to test the faulty 
versions of the target programs. The mutation detection ratio[20,26,42] is used to compare the fault detection 
capabilities of MT and assertion checking strategies. The mutation detection ratio of a test set is defined as the 
number of mutants detected by the test set over the total number of mutants[42]. For metamorphic testing, a mutant is 
detected if a source test case and follow up test cases executed on the mutant do not satisfy some metamorphic 
relations. For assertion checking, a mutant is detected if a mutated statement is executed by a test case to enter an 
erroneous state that triggers an assertion statement. 

For the sake of fairness, we applied these two methods to the same set of test cases separately. The source and 
follow-up test cases from metamorphic testing were both applied to assertion checking. 

The average sizes of the test suites (including source and follow-up test cases) used by all students for the three 
programs were 19.9, 22.2, and 16.8, respectively. We also analyzed all the mutants manually before testing and 
removed the equivalent mutants. There were 19, 18, and 61 equivalent mutants for program Boyer, 
BooleanExpression, and TxnTableSorter, respectively. We did not include them when calculating mutation detection 
ratios as these mutants cannot be detected by any test cases. 

Table 6 reports on the mutation detection ratios for each program using the two testing methods. It shows that 
the mutation detection ratios by applying MT ranged from 44% to 93% for program Boyer, from 46% to 89% for 
program BooleanExpression, and from 32% to 74% for program TxnTableSorter. 
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Table 6  Mutation detection ratios for metamorphic testing and assertion checking 

Metamorphic testing Assertion checking 
Program Mean 

(%) 
Max 
(%) 

Min 
(%) StdDev

Aggregate 
(%) 

Mean 
(%) 

Max 
(%)

Min 
(%) StdDev

Aggregate 
(%) 

Result of p-value of
mann-whitney test

Boyer 60 93 44 0.13 98 40 66 27 0.12 81 <0.001 

BooleanExpression 63 89 46 0.11 95 39 66 30 0.10 78 <0.001 

TxnTableSorter 59 74 32 0.14 83 37 58 22 0.11 63 <0.001 

Under the “Aggregate” columns are the percentages of mutants detected by all subjects. For MT, the mutation 
detection ratios were 98%, 95%, and 83%, respectively. Each entry was significantly better than the corresponding 
mutation detection ratio for assertion checking. This result, again, is encouraging. 

The p-value of the standard Mann-Whitney test was less than 0.001 in all cases. Hence, we reject the null 
hypothesis H0 on the effectiveness of fault detection at a 99.9% confidence level. In other words, MT may not only 
be comparable to assertion checking, but outperforms the latter. We have used the same set of test cases when 
applying the Mann-Whitney test. 

This setting and hypothesis testing result indicate that the difference is attributed by the ability to violate the 
constraints specified via metamorphic relations and those specified via assertion checking. We observe that the 
difference between the two testing methods in our experiment is whether the constraint is specified for one 
execution or for multiple executions. The former type of constraint is for assertion checking, and the latter type is 
for metamorphic relation. In the other words, the result indicates that using the test results of multiple executions to 
identify failures collectively is more effective than just using one execution. 

Although our empirical results show that metamorphic testing can be effective, there is a need to develop 
systematic methods for creating metamorphic relations and assertions (because individual tester’s results were lower 
than the aggregated results of all testers in either approach). The average differences between the mean column and 
the aggregate column for MT and assertion checking were 41.3% and 35.3%, respectively. The standard derivations 
did not differ much statistically. They ranged from 0.10 to 0.14, as shown in Table 6. 

5.4   Comparison of time cost 

We would like to compare the time costs between metamorphic testing and assertion checking. From the 
subjects’ submissions, we found that they spent less time on applying assertion checking than metamorphic testing. 

Table 7 shows the statistics of the time costs for applying the respective strategies to the target programs. Each 
entry in the column “Smallest Observation” stands for the smallest value (time cost in terms of hours) in the 
respective data set. Each entry in the column “Largest Observation” stands for the largest value in the respective 
data set. Each entry under “Median” captures the 50th percentile in the data. The entries under “Lower Quartile” 
and “Upper Quartile” capture the values of the 25th and 75th percentiles (in the order from small to large) in the 
data, respectively. The entries under “Lower Notch” and “Upper Notch” display the variability of the median in the 
data set. 

Table 7  Statistics of time costs for applying MT and assertion checking 

 Smallest 
observation

Lower
quartile

Lower
notch Median Upper

notch
Upper 

quartile 
Largest 

observation 
MT 0.58 1.73 1.99 2.51 5.01 5.11 9.82 Boyer assertion 0.58 1.03 1.03 1.48 1.99 2.12 2.18 
MT 0.32 2.25 2.51 3.28 6.03 8.02 12.71 BooleanExpression assertion 0.45 1.35 1.48 1.99 3.02 5.01 7.77 
MT 0.26 2.51 3.02 3.98 6.03 6.99 11.68 TxnTableSorter assertion 0.52 1.03 1.28 1.99 3.02 3.98 6.74 
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We observe from Table 7 several interesting tradeoffs between MT and assertion checking. First, the smallest 
observation in assertion checking is consistently larger than that in MT. Although applying MT is apparently more 
complex than assertion checking, this result shows that, for the most effective testers, the effort to design and 
implement metamorphic relations is less than the effort to design and implement assertions. Second, for each of the 
three target programs, the median and the largest observation in MT are always greater than the corresponding 
values in assertion checking. It indicates that designing and implementing MRs is generally more time-consuming 
than designing and implementing assertions. Third, from the lower quartiles and upper quartiles in MT and assertion 
checking for these programs, we further observe that the time spent on MT varies more drastically than the time on 
assertion checking. 

Intuitively, many developers have developed skills to understand program logic from source code and are 
comfortable in conducting program comprehension. Furthermore, developers are used to modifying an existing 
program to implement new changes to the source code. In view of the above intuition, we believe that adding 
assertions to source code is a more familiar and handy task for the subjects than formulating and implementing 
MRs. 

To analyze the differences between these two testing approaches to alleviate the test oracle problem, we further 
represent their time costs using box-and-whisker plots. Figure 2 shows the plots for applying the respective 
strategies to the target programs. The time cost for MT includes the time to identify and formulate test cases, write 
functions to generate follow-up test cases, and write functions to verify the identified metamorphic relations. The 
time cost for assertion checking includes the time spent on adding assertions to the source code. 

 
 
 
 
 
 
 

Fig.2  Box-and-Whisker plots of time costs for applying mt and assertion checking 

The vertical axis of Fig.2 shows the time cost in number of hours. The bottom and top horizontal lines of each 
box indicate the lower and upper quartiles. The whiskers, drawn as dotted vertical lines, show the full range of the 
data. The median is drawn as a horizontal line inside each box. A notch is added to each box to show the uncertainty 
interval for each median. If two median notches do not overlap, it indicates that there is a statistically significant 
difference between the two medians at a 95% confidence level. 

For Boyer and TxnTableSorter, there is a significant difference between the times spent in applying 
metamorphic testing and assertion checking. The difference is less statistically significant for Boolean¬Expression. 
The exact values of the respective notches can be found in Table 7. 

The difference in time cost is acceptable for a number of reasons. First, the time costs for MT implementations 
include the generation of follow-up test cases, whereas the time costs for assertion checking do not include the 
generation of any test cases. Second, some subjects have had prior experience in assertion checking. We believe that 
the extra time spent on developing programs to generate follow-up test cases have paid off because, as discussed in 
Section 5.2, these (follow-up) test cases have demonstrated to be very useful in detecting failures of the target 
programs. Furthermore, although there is a statistically significant difference in time costs (especially if we view 
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Table 7 in relative terms), we also note that the actual median difference in absolute terms range between one to two 
hours in the experiment. 

Figure 2 further indicates that the time cost for applying MT to object-oriented testing at the class level is 
acceptable compared to that of assertion checking. When we consolidate the comparisons in Sections 5.2 and 5.3, 
we find that MT provides a stronger oracle check with a tradeoff of slightly more time for preparation. 

5.5   Comparison of MT with and without faulty MR implementations 

As we have highlighted in Section 3.1, an MR is a property that the correct version of a program under test 
should exhibit. To apply MT automatically, testers need to execute the implementations of the MRs for the program 
under test. In the controlled experiment, these MR implementations are constructed by the subjects. It is crucial to 
know whether MT can still be effective if MR implementations can be faulty. 

We thus conducted a follow-up experiment to validate whether MT is robust enough if faulty metamorphic 
relations are used to detect failures in the subject programs. We used the set of mutation operators of muJava 
mentioned above to generate single-fault mutants of the MR implementations. In total, muJava produced 88, 71, and 
89 MR mutants for the three subject programs, respectively. If an MR mutant cannot be killed by any test case, we 
excluded such a mutant from the follow-up experiment. We also excluded similar target program mutants. We then 
selected a test suite of 20 test cases randomly from the test pool for each target program and computed the mutation 
detection ratio accordingly. We note that, in this validation experiment, a revealed failure may be a mistake (namely, 
a false positive case) produced by a faulty MR implementation, a failure of the faulty target program, or both. We 
repeated the experiment by selecting the test suites 10 times. 

The result is shown in Table 8. First, if we only use correct MRs to identify failures, the mean fault detection 
rate in the validation experiment is close to the mutation detection rate shown in Table 6. It indicates that the results 
of the validation experiment are comparable to the above-mentioned experiment that compares MT and assertion 
checking. Second, if MR implementations can be faulty, the mean value is much higher (consistently over 90% as 
shown in the rightmost column of Table 8). The result indicates that a test suite is likely to detect problems in the 
combination of a faulty target program and a set of faulty MRs. This finding is encouraging because MT can still be 
reasonably applied even if some MR implementations may be faulty. If a faulty MR implementation can be 
debugged successfully, we believe that the failure detection rate of the test suite will drop, as indicated by the 
comparison in Table 7. However, fixing the faults in the MR implementations will incur additional time cost. It may 
make the difference in time cost between metamorphic testing and assertion checking more noticeable. Thus, it 
warrants more study to find the extent that testers should stop further maintenance of a faulty MR implementation in 
order to balance the development cost and product quality. 

Table 8  Mutation detection ratios for metamorphic testing with and without faulty 
metamorphic relation implementations 

With correct MR implementations only With both correct and faulty MR 
implementations Program 

Mean  
(%) 

Max
(%)

Min
(%) StdDev Median 

(%) 
Mean 
(%) 

Max
(%)

Min
(%) StdDev Median 

(%) 
Boyer 59 100 2 0.25 56 95 100 85 0.03 95 

BooleanExpression 72 100 34 0.27 85 91 100 80 0.08 94 
TxnTableSorter 66 100 6 0.22 57 91 100 67 0.05 90 

5.6   Further discussions on MT 

In general, we observe that the more MRs being used, the higher will be the mutation detection ratio. As we 
have indicated in Section 5.2, there is a need to propose more systematic methods to construct the implementation 
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of metamorphic relations. The utilization of an MR implementation also increases as testers increase the number of 
initial test cases applicable to the MR. Since the resources in software testing are often limited, it is also worth 
investigating the number of test cases adequate for MT. 

Moreover, testers may apply a number of metamorphic relations in order to test a program. In general, different 
metamorphic relations have non-identical fault detection capabilities. Let us, for instance, analyze the experimental 
results of the Boyer program. The subjects have identified 18 metamorphic relations in total. We observe that four 
subjects have only identified one and the same metamorphic relation (MR1 in Table 9). The implementation of this 
metamorphic relation constructs a follow-up test case by appending an arbitrary string to the string in the initial test 
case and reusing the given pattern in the initial test case. It also checks whether the Boyer program over the two test 
cases will give the same outputs if the program locates successfully the given pattern in the initial string. The 
mutation detection ratios resulting from these MR implementations by the subjects are no more than 60% no matter 
how many test cases they used. We also find that some subjects using the other metamorphic relations (MR2 and 
MR3 in Table 9) achieve mutation detection ratios higher than 80%, although they only propose four initial test 
cases. It indicates that the quality of metamorphic relations can be a key factor in determining the effectiveness of 
MT. 

Table 9  Examples of metamorphic relations for program Boyer 

Index Metamorphic relation 
MR1 If (x1=concatenate(x2,x3))∧(find(x2,x4)>−1), then find(x1,x4)=find(x2,x4). 
MR2 If (x1=concatenate(x2,x3))∧(find(x2,x4)=−1)∧(find(x3,x4)>−1), then find(x1,x4)≤length(x2)+find(x3,x4). 
MR3 If (x1=concatenate(x2,x3))∧(find(x1,x4)=length(x2)), then find(x3,x4)=0. 

The function concatenate(x,y) returns the result of concatenating string x and string y. The function find(x,y) 
returns the zero-based index of string y within the string x if x contains y; otherwise, it returns −1. 

6   Conclusion 

This paper has reported a controlled experiment to study the application of metamorphic testing (MT) and 
assertion checking as the means to alleviate the test case problem. A main objective is to evaluate whether MT is a 
useful and viable strategy and to assess its cost and effectiveness. We choose to compare MT with a popular testing 
method, namely, assertion checking. The experiment indicates that, after training, the subjects could apply MT to 
test programs effectively. For all the three open-source programs under study, the subjects could identify many 
useful metamorphic relations. The results also suggest that MT is a more effective testing strategy than assertion 
checking in terms of fault detection capability. The time cost of applying MT is acceptable when compared with 
assertion checking. However, assertion checking is more efficient. Our study also reveals that the granularity of 
MRs is coarser than that of assertion checking. It may indicate that MRs provide a high level of abstraction for 
testers to deal with testing tasks. 

Future research includes the following: In our experiments, the subjects must identify metamorphic relations 
and develops programs manually to apply MT. It will be desirable to automate, even in part, the formulation and 
generation of metamorphic relations. Other future experiments include the impact of experience levels of subjects 
on applying MT, and the use of other subjects, programs and MRs. It is also interesting to study how MT integrates 
with test case adequacy criteria, and the role of program development environments to lower the barrier to applying 
MT in practice. Our empirical study only examines the effectiveness and time cost of metamorphic testing and 
assertion checking. We have not formulated the underpinning theory to explain the differences. We hope that our 
study provides an initial set of empirical evidence for researchers to explore this inadequately researched and yet 
important area. 
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