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Abstract:  Answer set programming (ASP) is a logic programming paradigm under answer set semantics, which 
can be utilized in the field of non-monotonic reasoning and declarative problem solving, etc. This paper proposes 
and implements a cycle breaking heuristic and a bottom-restricted look-ahead procedure for ASP, and the resulting 
system is called LPS. The experimental results show that, relative to other state-of-the-art ASP systems, LPS could 
efficiently solve logic programs in phase transition hard-job-regions, and these programs are generally considered 
difficult to compute. In addition, by applying the so-called dynamic variable filtering (DVF) technique, LPS could 
greatly reduce the search tree size during the computation. 
Key words:  answer set programming; heuristic; look-ahead; logic program; phase transition 

摘  要: 回答集编程(answer set programming,ASP)是一种回答集语义下的逻辑编程范例,可应用于非单调推理,叙
述式问题求解等领域.本文为 ASP 提出并实现了一种破圈启发方法与一种基部限制式前向搜索过程,所得到的系统

称为LPS.实验结果显示,相对于其他经典的ASP系统,LPS能够有效地解决处于相变难区域中的逻辑程序,通常这些

程序被认为是计算困难的.除此以外,通过使用被称为动态变元过滤(dynamic variable filtering,DVF)的技术,LPS 可

以在计算过程中极大地缩小搜索树的尺寸. 
关键词: 回答集编程;启发方法;前向搜索;逻辑程序;相变 
中图法分类号: TP18   文献标识码: A 

1   Introduction 

Answer set programming (ASP) is a logic programming paradigm under answer set semantics (also called 
stable model semantics)[1,2]. In ASP, problems are encoded as logic programs, the corresponding answer sets of the 
logic programs give solutions to the original problems. Many applications like non-monotonic reasoning, reasoning 
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about actions, declarative problem solving[3], can be expressed by logic programs, and then solved by an ASP 
system. 

Unfortunately, checking whether a logic program has an answer set is NP-complete[4]. It follows that 
computing answer sets for logic programs is a computational hard task. In the last decade, much work has been 
devoted to the implementation of ASP, most of these systems like Smodels, DLV[5,6] are based on backtrack search 
algorithms, which essentially construct a binary search tree and have to handle exponential search space. For such 
algorithms, heuristics are crucial, good heuristics can significantly improve system performance. 

In this paper we propose so-called cycle breaking heuristic for ASP, the idea is motivated by Ref.[7], where 
new upper bounds for computing answer sets are obtained through analyzing the number of cycles of a logic 
program. In particular, Ref.[7] suggests that a good heuristic should break the most number of even cycles. As we 
shall see later, our heuristic matches the purpose quite good. Another important feature of ASP systems is the use of 
look-ahead procedures[5,6], the basic idea is to discover inconsistency before selecting a new branching node, and 
then backtrack as soon as possible, avoiding falling into a deep dead end. It has been shown that look-ahead can 
greatly speed up the computation, however, it often consumes most of the running time of a system, many restricted 
look-ahead procedures are then proposed to reduce the running cost. In this paper we present a look-ahead 
procedure for ASP, which restricts the atoms being looked on bottoms. Intuitively, bottoms are the “root” of the 
dependency graph of a logic program, the truth values of the atoms outside bottoms depend on those inside, 
therefore restricting the looking over bottoms is considered to be a good idea. 

The rest of the paper is organized as follows. Section 2 provides some basic concepts of ASP. Section 3 
presents the basic algorithm for computing an answer set. Sections 4 and 5 describe the cycle breaking heuristic and 
the bottom-restricted look-ahead procedure. In Section 6, the experimental results are presented and some related 
work is briefly discussed in Section 7, we draw conclusions and show future directions in Section 8. 

2   Preliminaries 

A logic program is a finite set of rules of the form: a←b1,…,bm, not c1,…,not cn, where a, bi’s, cj’s are atoms. 
We call a the head of the rule and the other atoms the body of the rule. For convenience, let Head(r)=a, 
Pos(r)={b1,…,bm} and Neg(r)={c1,…,cn}. A literal is an atom or an atom preceded by not. The former is called a 
positive literal and the latter is called a negative literal. If Neg(r)=∅ then r is a definite rule. A definite logic 
program P is a set of definite rules, by Cn(P) we refer to its unique minimal closure. By At(P) we denote the set of 
atoms occurring in a logic program P. The Gelfond-Lifschitz reduct PA of P with respect to a set A⊆At(P) is 
obtained by deleting each rule r∈P such that Neg(r)∩A≠∅, and removing all negative literals in the remaining rules. 
Note that a Gelfond-Lifschitz reduct must be a definite program. A set of atoms A⊆At(P) is said to be an answer 
set[1] of P iff A=Cn(PA). The well-founded model[9] of a logic program P is a unique ordered pair I(P)=〈I(P)+,I(P)−〉 
in which I(P)+ contains atoms which must be true and I(P)− contains atoms which must be false. The truth values of 
atoms which are neither in I(P)+ nor in I(P)− are uncertain. Well-founded model can be characterized by operator γP, 
which is defined as γP(A)=Cn(PA). Note that A1⊆A2 implies γP(A2)⊆γP(A1), i.e. γP is anti-monotone. It follows that 

2 ( ) ( ( ))P P PA Aγ γ γ=  is monotone, the well-founded model of a program P can be represented as  2 2( ), ( )P Plfp gfpγ γ〈 −

( )At P 〉  in which 2( )Plfp γ is the least fixed-point of 2
Pγ  and 2( )Pgfp γ  the greatest fixed-point of 2

Pγ [10]. Consider 

a logic program P1={c←not b,b←not c,a←}, the answer sets of it are {a,c} and {a,b} while its well-founded model 
is 〈{a},∅〉. A simplification[11] of a logic program P under its well-founded model I(P), denoted by P\I(P), is 
obtained by deleting each rule r∈P such that either Head(r)∈I(P)+ or Pos(r)∩I(P)−≠∅ or Neg(r)∩I(P)+≠∅, and 
remove all positive literals a where a∈I(P)+ and all negative literals not a in which a∈I(P)− from the bodies of the 
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remaining rules. 
A dependency graph of a logic program P, denoted by G(P), is a directed graph 〈V,E〉 with labeled edges. Let 

V=At(P), there is a positive (negative, respectively) edge from node p to node q if there exists a rule r∈P, Head(r)=q 
and p∈Pos(r) (p∈Neg(r), respectively). A strongly connected component of a directed graph 〈V,E〉 is a set of nodes 
V′⊆V such that for any u,v∈V′, there is a path from u to v, and V′ is not a proper subset of any such sets. A bottom[7] 
is a strongly connected component S of a directed graph, and there is no other strongly connected component S′ 
such that there is a path from S' to S. Note that a strongly connected component can be computed in linear time[12]. 
An odd (even, respectively) cycle of a dependency graph is a simple cycle containing an odd (non-zero even, 
respectively) number of negative edges. Both odd and even cycles are called negative cycles, simple cycles 
containing no negative edges are called positive cycles. 

Odd cycles and even cycles are of great interest in investigating logic programs. It has been shown that a logic 
program which has no odd cycles[13] (called call-consistent program) at least has one answer set, and a logic 
program that has no even cycles[14] has at most one answer set. Furthermore, in the latter case, if the well-founded 
model of the logic program is also its answer set, then it is the only one, otherwise, it has no answer sets[15]. 
Informally speaking, odd cycles eliminate answer sets while even cycles generate answer sets. Based on these 
results, an algorithm for computing answer sets concerning cycles is proposed in Ref.[7], in next section we shall 
describe a slightly modified version. 

3   Basic Algorithm for Computing Answer Sets 

A signed atom a* is an atom a with sign *∈{+,−}. Define ¬¬¬a−=a+ and ¬a+=a−. Let σ be a finite consistent 
set of signed atoms, by consistence we mean there is no atom a such that both a+, a− are in σ. Define c+={b+|b+∈σ}, 
similarly, σ−={b−|b−∈σ}. For a set of signed atoms ∅, let |∅|={b|b*∈∅}. 

Definition 1[11]. Let P be a logic program, and σ a finite consistent set of signed atoms with |∅|⊆At(P), let Pσ 
be the program obtained from P by deleting all rules r∈P which Pos(r)∩|σ−|≠∅ or Neg(r)∩|σ+|≠∅, and removing 
positive literal a from the bodies of the remaining rules if a∈|σ+| or negative literal not a if a∈|σ−|. 

For instance, let P be P1 mentioned in previous section, σ={b+,c−}, we have Pσ={b←,a←}. Intuitively, 
|σ+|(|σ−|, respectively) stands for atoms assumed to be true (false, respectively). Furthermore, consider the 
dependency graph G(Pσ), it is a subgraph of G(P) and there are no edges going out from atoms in |σ|, in some sense 
they break the outgoing edges, we call these atoms breaking nodes. 

Proposition 2[11]. Let P be a logic program, and σ a finite consistent set of signed atoms with |σ|⊆At(P). 
Suppose S is an answer set of P, |σ+|⊆S and |σ−|∩S=∅, then S is an answer of Pσ. 

Proposition 2 implies that each answer set of P is an answer set of either 
{ }a

P +  or  where a∈At(P), 
{ }a

P −

however, the inverse generally does not hold. The proposition below shows an interesting property about bottoms. 
Proposition 3[7]. Given a logic program P and its well-founded model I(P), if Q=P\I(P) is not empty, then 

every bottom of Q must have a pair of nodes a and b, such that there is a negative edge from a to b. 
Proposition 3 shows the existence of a negative cycle in each bottom of the well-founded simplification of a 

program, which plays an important role in the proof of theorem 4. Having introduced the above definitions and 
propositions, we present our basic algorithm Ans(P) in Fig.1, where ComputeAns(Pσ) performs binary search, 
Bottoms(Q) returns the set of all bottoms of logic program Q and I(Pσ) returns the well-founded model of Pσ. The 
soundness of the algorithm is guaranteed by the theorem below: 

Theorem 4[7]. A logic program P has an answer set if and only if Ans(P) returns True. 
Proof: (Sketched) ⇒. By induction on k, the number of odd and even cycles in G(P). For k=0, it is well-known 
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P has an unique answer set I(P)+. For k>0, trivial if I(P)+ is the answer set of P. Suppose I(P)+ is not an answer set 
for P, pick a breaking node a from ∪Bottoms(Q) on a negative cycle (such a node always exists). Note that an 
answer set of P is either an answer set of  or 

{ }a
P + { }a

P −  and both of them have less negative cycles than k, by 

induction assumption, ( , respectively) returns true if  ( , 
{ }

( )
a

ComputeAns P + { }
(

a
ComputeAns P − )

{ }a
P + { }a

P −

respectively) has an answer set which is also an answer set of P∅ (i.e. P). Therefore if P has an answer set then 
Ans(P) returns true. ⇐. Trivial. □ 

It has been shown in Ref.[7] that if a program P has at most k even cycles, then P has at most 2k answer sets, 
and can be computed in 22kO(nk) time, where n is the size of the given program. Moreover, restricting the number of 
odd cycles cannot reduce the complexity. These facts imply that ComputeAns(Pσ) should break the most number of 
even cycles when selecting a breaking node, such that the two resulting logic programs have less even cycles and 
then easier to compute. In ComputeAns(Pσ), we pick breaking nodes from bottoms which at least break one negative 
cycle, unfortunately, whether it breaks an even cycle is an NP-complete problem[7], we shall propose a heuristic for 
this problem in next section. 

 
 
 

Procedure Ans(P) 
Input: A logic program P; 
Output: True if P has an answer set otherwi e False. s

 
 
 
 
 

1. return ComputeAns(P∅); 
 
Procedure ComputeAns(Pσ) 
Input: A logic program Pσ; 
Output: True if Pσ has an answer set that is also an answer set of P∅ otherwise False. 
1. if I(Pσ)+ is an answer set of Pσ then 
2.   if I(Pσ)+ is an answer of P∅ then retur  True else return False n

 
 

3. end if 
4. Q:=Pσ\I(Pσ); 
5. Pick a∈∪Bottoms(Q) on a negative cycle; 

 6. if  then return True else return  
{ }

(
a

ComputeAns P
σ +∪

)
{ }

( )
a

ComputeAns P
σ −∪

Fig.1  Basic algorithm for computing an answer set 

4   Cycle Breaking Heuristic 

From the above sections, we know that choosing a node that breaks many even cycles can significantly speed 
up the computation. However, it is very difficult to pick such a node since even deciding whether it breaks one even 
cycle is NP-complete. A compromise is to prefer breaking negative cycles, no matter which kind of cycles (odd or 
even) they are. In addition, observe that in a directed graph, a node that has more degrees (occurrences) would 
probably break more cycles, similar idea has been adopted by the famous MOMS heuristic[16,17], which prefers 
picking atoms in shorter open clauses. Based on the above motivations, we propose our heuristic as follows. 

Define the length of a rule r to be the number of unassigned literals in its body with respect to well-founded 
semantics, denoted by L(r). Let r be a rule containing some unassigned atoms in program P (i.e. open rules), for 

each unassigned atom a∈At(P) we define ( )
1

( )
( ) L r

head r a
w a α −

=

= ∑ , ( )
2

( )
( ) L r

a Pos r
w a α −

∈

= ∑ , ( )
3

( )
( ) L r

a Neg r
w a α −

∈

= ∑ . 

These functions calculate the weights contributed by different occurrences of atom a, more precisely, they 
calculate the weights of a when it is a head, positive literal and negative literal respectively. The value of α is 
empirically set to 5, means that every 5 occurrences of an atom in a length i+1 rule are counted as 1 occurrence in 
rule which has length i, this value is obtained by a large number of experimenting, and adopted by many 
researchers[16−18]. The evaluation function w(a) is defined as: w(a)=w1(a)+w2(a)+β⋅w3(a) where β is an empirically 
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good value used to emphasize negative edges since we prefer breaking negative cycles, this value could be modified 
when dealing different logic programs. In this paper we use a fixed value β=1.3. LPS selects a breaking node a such 
that w(a) is the greatest, moreover, if w2(a)>w3(a) then it first branches a, otherwise it first branches not a. 
Alternating branching order is employed by most ASP systems and has been proved quite useful in some instances. 

This function is applied on bottoms, since picking a node from a bottom at least breaks one cycle (since 
bottoms are strongly connected components), furthermore, since there exists at least one negative cycle in each 
bottom of the well-founded reduction of a program, so the heuristic is expected to efficiently break negative cycles 
and therefore greatly reduce the depth of the search tree. 

+ 

− 

+ − 

c 

For example, let P2={a←not b,b←not a,c←a,c←b}, its dependency 
graph is shown in Fig.2, it is easy to see it has one bottom {a,b}. In the 
binary search if we first pick c then the truth values of a,b are still not 
determined, however, if we first choose an atom from the bottom {a,b}, then 
an answer set is immediately derived. Note that in the latter case, the only 
even cycle of the program is broke when we choose a or b according to our 
heuristic. 

a b 

Fig.2  Dependency graph of P2

5   Bottom-Restricted Look-Aheads 

The essential of look-ahead[5,6] is to discover a dead end as early as possible, thus avoid large scale 
backtracking. Simply speaking, before choosing a new node in the binary search, look-ahead procedure assumes 
true and then false for an unassigned atom and performs consistency checking, if both checkings are inconsistent, 
the search backtracks since there is a contradiction, else if exactly one of the checking is consistent then it picks the 
atom with the consistent value, otherwise the procedure looks at next unassigned atom. As mentioned before, 
look-ahead procedure is computational expensive, since for each unassigned atom the consistency checking is 
performed twice. In LPS look-ahead is applied on bottoms instead of all unassigned atoms, thus called 
bottom-restricted look-ahead. Intuitively, bottoms are the “root” of the dependency graph of a program, the truth 
values of the atoms outside bottoms depend on those inside. A large program may have small bottoms, therefore 
looking on bottoms is believed strong enough to discover many contradictions in advance. 

We implemented two versions of bottom-restricted look-ahead in LPS: one adopts so-called static variable 
filtering (SVF) while another one adopts dynamic variable filtering (DVF). These two techniques are originally 
proposed in SAT[19], where they appear to have different performances. Roughly speaking, look-ahead with SVF at 
most looks every atom once and then return to the binary search, however, if an atom is picked during the looking, 
then the current partial model is changed and new information about the contradiction may be inferred, so 
look-ahead with DVF looks unassigned atoms repeatedly until no contradictions could be discovered. 

Bottom-restricted look-ahead with DVF is shown in Fig.3 and the SVF version could be obtained by removing 
the Do-Until loop. The function Conflict(P,〈|σ+|,|σ−|〉) in Fig.2 is from Ref.[5], it returns true when P has no answer 
set S such that |σ+|⊆S and |σ−|⊆At(P)\S, the mechanism behind it is to expand the current partial model 〈|σ+|,|σ−|〉 by 
some sophisticated inference rules and see whether |σ+|∩|σ−|≠∅, if so then the current partial model is consistent, 
details about this function could be found in Ref.[5]. In Fig.4, we present the improved basic algorithm for LPS, 
which integrates the bottom-restricted look-ahead and the cycle breaking heuristic. 

To see how look-ahead procedure speeds up the computing, consider a program P3={a1←not b1,b1←not 
a1,…an←not bn,bn←not an,c←not c}. P3 has no answer sets and n+1 bottoms (Fig.5), without look-ahead 
procedure, in the worst case the algorithm may has to go through 2n partial models before it is sure that there is no 
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Procedure Look-ahead(Pσ) 
Input: A logic program Pσ; 
Output: A logic program Pσ ′  if no dead end is discovered otherwise False. 
1. do 
2.  σ′:=σ; Q:=Pσ\I(Pσ); 
3.  for each a∈∪Bottoms(Q) 
4.  if Conflict(P∅,〈|σ+|∪{a},|σ−|〉) &&  
5.    Conflict(P∅,〈|σ+|,|σ−|∪{a}〉) then  6.       return False; 
7.  else if Conflict(P∅,〈|σ+|∪{a},|σ−|〉) then  
8.       σ:=σ∪{a−}; 
9.  else if Conflict(P∅,〈|σ+|,|σ−|∪{a}〉) then 
10.       σ:=σ∪{a+}; 
13.   end if 
14.   end for 
15. until σ′=σ 
16. return Pσ

answer sets, however, if we enable look-ahead procedure, the algorithm can return false at one step since conflict 
checking is performed on each bottom thus the rule c←not c is discovered to be unsatisfiable for any partial model. 
In this extreme example, the look-ahead procedure saves exponential time. 

answer sets, however, if we enable look-ahead procedure, the algorithm can return false at one step since conflict 
checking is performed on each bottom thus the rule c←not c is discovered to be unsatisfiable for any partial model. 
In this extreme example, the look-ahead procedure saves exponential time. 

  
  

  
  

  
  
  
  
  

 

 
 
 

Fig.3  Bottom-Restricted look-ahead with DVF Fig.3  Bottom-Restricted look-ahead with DVF 

Procedure ComputeAns(Pσ) 
Input: A logic program Pσ; 
Output: True if Pσ has an answer set that is also an answer set of P∅ otherwise False.  
1. if Look-ahead(Pσ)=False then return False  
2. Pσ:=Look-ahead(Pσ); 
3. if I(Pσ)+ is an answer set of Pσ then 
4.   if I(Pσ)+ is an answer of P∅ then return True else return False  
5. end if 
6. Q:=Pσ\I(Pσ); 
7. Pick a∈∪Bottoms(Q) such that w(a) is the greatest  
8. If w2(a)>w3(a) then b:=a+ else b:=a− 

9. if ComputeAns(Pσ∪{b}) then return True else return ComputeAns(Pσ∪{¬b}) 
 

  
  
 
 
  
 
  
 
 

Fig.4  Basic algorithm integrated with cycle breaking heuristic and bottom-restricted look-ahead Fig.4  Basic algorithm integrated with cycle breaking heuristic and bottom-restricted look-ahead 
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Fig.5  Dependency graph of P3Fig.5  Dependency graph of P3

6   Experimental Results 6   Experimental Results 

In this section we compare LPS with ASP systems Smodels, DLV and Nomore++[20]. The platform is a 
Celeron4 1.7GHz PC with 256M memory, running Fedora 2.4.22. LPS is compiled by g++ version 3.3.2 with 
optimization parameter −O3. In all tables, times are in second, tree means the search tree size, i.e. the number of the 
breaking nodes. We first experiment randomly generated benchmarks[21]. Let k-LP(N,L) be the classes of programs 
that have N atoms and L rules with fixed length k, the authors of Ref.[21] discovered so-called hard-job-regions: 

In this section we compare LPS with ASP systems Smodels, DLV and Nomore++[20]. The platform is a 
Celeron4 1.7GHz PC with 256M memory, running Fedora 2.4.22. LPS is compiled by g++ version 3.3.2 with 
optimization parameter −O3. In all tables, times are in second, tree means the search tree size, i.e. the number of the 
breaking nodes. We first experiment randomly generated benchmarks[21]. Let k-LP(N,L) be the classes of programs 
that have N atoms and L rules with fixed length k, the authors of Ref.[21] discovered so-called hard-job-regions: 
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classes with L/N=4~6, i.e. these programs are generally difficult to solve. The following experiments are done with 
3-LP(200,L) classes, which are considered to be moderate, i.e. they would not be too easy to distinguish the systems 
and too hard to compute. 

The first benchmark consists of 282 programs from 11 classes where L/N=3~8 with a step of 0.5, following the 
“easy-hard-easy” pattern. Results are described in Table 1, LPS (SVF) outperforms other solvers in the regions of 
L/N=4.5~7 which fully cover the hard-job-regions, in easy-job-regions, Smodels is the best one. Note that LPS 
(DVF) has the smallest search tree size during the experiment (DLV provides no information about the search tree) 
and the running times are quite close to LPS (SVF). 

Table 1  Experimental results on “easy-hard-easy” pattern 
Smodels LPS (SVF) LPS (DVF) Nomore++ DLV L/N #Num 

Time Tree Time Tree Time Tree Time Tree Time Tree 
3 25 2.51 706 19.71 6181 15.58 386 26.41 387 68.85 − 

3.5 24 29.54 7007 100.13 21415 88.97 1552 144.11 1725 748.37 − 
4 24 115.27 22086 191.18 33332 174.74 2495 344.13 3282 1599.78 − 

4.5 23 348.81 46266 237.89 31411 257.73 2476 548.36 4080 2100.10 − 
5 27 257.70 35223 207.74 22820 218.33 1808 551.25 3424 1832.41 − 

5.5 26 234.63 24454 187.55 16902 241.01 1333 586.01 2951 1420.56 − 
6 26 144.04 13275 118.27 8878 144.07 747 415.85 1766 630.84 − 

6.5 24 74.95 5825 66.42 4301 92.33 371 273.92 980 268.54 − 
7 27 35.78 2548 35.74 1947 49.70 182 140.81 439 107.20 − 

7.5 28 16.11 1088 23.98 1116 34.43 110 92.10 254 55.40 − 
8 28 8.5 540 16.93 677 22.58 72 56.51 145 33.73 − 

From the above results, it is natural to conjecture that LPS may work more efficient in hard-job-regions, so we 
select three hard classes with L/N=4.5, 5 and 5.5, for each class we experiment 1000 programs, the top 10 hard 
programs (according to Smodels) are shown in Tables 2~4 respectively. As we expected, LPS completely 
outperforms other systems on these top hard programs, where LPS (SVF) solved 24 out of 30 programs with the 
minimal times, and LPS (DVF) outperforms LPS (SVF) on the remaining 6 programs, and still, LPS (DVF) 
possesses the smallest search tree sizes. 

We analyzed some hard programs and found that they contain complicated bottoms, it follows that the cycles 
occurring in these components are quite complex. They seem to be the reason why these instances are so difficult to 
solve. In some sense, the experimental results support our conjecture that LPS performs better than other systems in 
hard-job-regions. Furthermore, LPS (DVF) can efficiently prune the search space, thus has the minimal search tree 
sizes, this is mainly because LPS (DVF) chooses most breaking nodes during look-ahead instead of binary search. 

Table 2  Top 10 out of 1000 hard programs, k=3, N=200, L/N=4.5 
Smodels LPS (SVF) LPS (DVF) Nomore++ DLV Instance 

No. Time Tree Time Tree Time Tree Time Tree Time Tree 
095 1122.85 165489 212.30 37953 314.33 3042 937.07 7246 1625.67 − 
303 798.74 162475 384.66 49971 523.74 4190 951.59 7226 >3600 − 
198 778.73 129200 167.66 22098 187.73 1783 350.82 2700 1938.20 − 
703 635.92 113574 129.63 17838 136.12 1430 270.96 2230 627.89 − 
536 598.45 53235 394.81 47904 398.52 3683 966.46 7747 >3600 − 
400 561.42 71972 392.93 59896 499.34 4507 1348.54 10671 2262.15 − 
540 516.70 51230 148.94 18566 122.32 1470 280.82 2121 588.04 − 
695 493.15 58198 208.11 26933 192.13 1741 289.39 2178 2359.9 − 
700 426.55 64440 340.29 50340 382.31 3712 914.39 6741 2390.54 − 
592 367.32 62212 175.79 21790 206.08 1790 376.80 2890 1544.44 − 
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Table 3  Top 10 out of 1000 hard programs, k=3, N=200, L/N=5 
Smodels LPS (SVF) LPS (DVF) Nomore++ DLV Instance 

No. Time Tree Time Tree Time Tree Time Tree Time Tree 
174 779.34 93711 156.29 17549 195.98 1449 801.88 4250 2107.70 − 
263 774.74 101593 286.10 34440 430.23 3063 648.61 3877 2748.91 − 
021 691.43 103662 164.72 19392 209.54 1599 626.59 4250 1563.71 − 
574 653.86 96238 139.36 16483 128.51 1192 388.87 2461 993.45 − 
953 619.80 56523 207.76 27351 205.26 2250 694.94 3976 720.61 − 
444 604.15 50463 126.99 14833 160.70 1616 562.09 3771 1525.78 − 
529 603.35 78678 277.26 34310 445.43 2331 693.48 4306 1559.89 − 
028 587.69 70425 376.70 41145 448.02 3265 891.20 5478 1748.90 − 
196 553.17 72574 100.78 12306 119.61 1066 578.18 3659 1328.63 − 
076 535.12 56781 266.77 33033 354.12 2766 584.74 3619 1557.45 − 

 
Table 4  Top 10 out 1000 hard programs, k=3, N=200, L/N=5.5 
Smodels LPS (SVF) LPS (DVF) Nomore++ DLV Instance 

No. Time Tree Time Tree Time Tree Time Tree Time Tree 
255 817.47 63135 351.13 40027 500.73 3060 970.41 4858 >3600 − 
214 683.31 73163 143.70 13261 188.16 1135 618.79 2857 1051.08 − 
396 649.78 64759 70.84 7171 86.96 871 802.62 4133 1826.96 − 
567 624.98 58082 236.67 24210 311.78 1987 1275.24 7038 2091.13 − 
534 546.12 61502 202.66 17859 74.31 670 214.27 1106 235.80 − 
233 439.80 39295 108.60 8480 152.77 794 558.04 2857 1393.03 − 
409 408.06 41100 236.06 24718 329.77 2117 875.90 4941 1939.24 − 
929 400.39 50450 280.71 27233 342.84 2078 617.15 3428 1107.26 − 
855 379.38 34575 189.74 16482 147.48 1343 530.13 2990 651.68 − 
182 348.43 20305 124.17 13879 195.94 1190 681.01 3406 566.30 − 

Table 5 presents experimental results on some real-world benchmarks. Roughly speaking, the performance of 
LPS is close to other systems, though it is not the most efficient one in terms of running time. This is reasonable, 
since ASP is NP-Complete, the cycle breaking heuristic and the bottom-restricted look-ahead would not be efficient 
for all benchmarks. Moreover, Smodels is highly optimized for real-world applications, it is not surprising that it is 
the best one in Table 5. A good result is that, LPS (DVF) still appear more efficient than other systems in terms of 
tree sizes. 

Table 5  Experimental results on bounded model checking 
Smodels LPS (SVF) LPS (DVF) Nomore++ DLV Instance #Atom #Rule

 Time Tree Time Tree Time Tree Time Tree Time Tree 
DP-8 691 1112 0.16 9 0.47 26 3.82 9 0.97 12 4.42 − 

DP-10 1103 1790 2.12 296 12.77 339 16.73 89 14.31 116 28.43 − 
DP-12 1611 2628 347.97 103557 429.36 82456 903.77 9931 565.47 32073 677.33 − 

Elavator-1 1103 1596 0.34 17 2.41 55 5.30 19 3.32 15 3.54 − 
Elavator-2 3195 4465 4.58 38 26.39 72 37.12 22 21.11 35 43.75 − 
Elavator-3 7824 10660 149.14 130 221.23 166 241.18 59 198.43 107 565.9 − 
Elavator-4 6437 8957 1164.34 1384 1613.22 1928 1825.12 279 907.11 796 >3600 − 

Hartstone-50 854 1138 2.17 142 4.45 173 5.03 77 3.92 103 5.63 − 
Hartstone-75 1254 1663 10.94 192 15.77 203 23.54 99 16.68 188 34.55 − 

Hartstone-100 1654 2188 26.25 242 35.34 277 38.91 66 21.11 139 58.13 − 

7   Related Work 

In this section we briefly discuss features of other ASP system. Smodels uses several sophisticated inference 
rules for characterizing answer sets, during the binary search, it chooses an atom which maximizes the current 
partial model and restricts look-ahead by removing some unassigned atoms if they have been derived during 
consistency checking. DLV is designed and optimized for disjunctive logic programs[6,22], this may explain why 
DLV appears not so good during the above experiments since all programs are not disjunctive. Several heuristics are 
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incorporated into DLV[18], one of these heuristics looks close to ours, however, the most important difference is that 
the heuristics in DLV do not concern the heads at all, while in our heuristic the heads do contribute to the evaluation 
function. For restricting the look-ahead, DLV defines so-called look-ahead equivalent literals, i.e. if two literals are 
look-ahead equivalent, then it is sufficient to only look one of them thus avoiding unnecessary looking. 
Nomore++[20] is an operator-based system, it adopts several semantics operators to compute answer sets and treats 
heads and bodies as equitably computational objects. It follows that its look-ahead not only perform on atoms but 
also on bodies, Ref.[20] shows that this hybrid look-ahead may save exponentially many choices on some instances. 
The heuristics in Nomore++ are operator-based and runtime configurable, by combing different semantics operators 
with choice operator, Nomore++ could enable several heuristics during the computation. It is worth to mention 
some SAT-based ASP systems like[23], which compute answer sets by SAT solvers. Generally speaking, SAT-based 
ASP systems are more efficient than the systems shown above, however, SAT-based ASP systems do not concern 
any ASP heuristics or implementation techniques at all, thus beyond the scope of this paper. 

8   Conclusions and Future Directions 

We present an ASP system called LPS, which employs a bottom-restricted look-ahead procedure together with 
an effective cycle breaking heuristic. The experimental results show that in phase transition hard-job-regions, LPS 
generally performs better than other ASP systems, i.e. LPS is good at solving random hard programs to some extent. 
Further, LPS with DVF (dynamic variable filtering) appears to be an efficient ASP system in terms of search tree 
size, this means DVF is theoretically a good approach for reducing search space. 

It is worth to point out that random hard phenomena get more attention in recent years, they are believed to 
have strong connections with cryptography[24] (hard random propositional formulas or logic programs could be 
considered as one-way functions). Since LPS is good at solving random hard instances, it could be applied to the 
area of cryptography in addition to real-world applications. Our future work will focus on improving LPS, some 
advanced techniques like conflict recording[25], non-chronological backtracking[26] will be added, and various 
heuristics for real-world applications will also be studied in LPS. 
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