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Abstract:  Optimized association rules are permitted to contain uninstantiated attributes. The optimization 
procedure is to determine the instantiations such that some measures of the rules are maximized. This paper tries to 
maximize interest to find more interesting rules. On the other hand, the approach permits the optimized association 
rule to contain uninstantiated numeric attributes in both the antecedence and the consequence. A naive algorithm of 
finding such optimized rules can be got by a straightforward extension of the algorithm for only one numeric 
attribute. Unfortunately, that results in a poor performance. A heuristic algorithm that finds the approximate optimal 
rules is proposed to improve the performance. The experiments with the synthetic data sets show the advantages of 
interest over confidence on finding interesting rules with two attributes. The experiments with real data set show the 
approximate linear scalability and good accuracy of the algorithm. 
Key words:  optimized rule; association rule; interest; heuristic; approximation 

摘  要: 优化关联规则允许在规则中包含未初始化的属性.优化过程就是确定对这些属性进行初始化,使得某些

度量最大化.最大化兴趣度因子用来发现更加有趣的规则;另一方面,允许优化规则在前提和结果中各包含一个未初

始化的数值属性.对那些处理一个数值属性的算法进行直接的扩展,可以得到一个发现这种优化规则的简单算法.然
而这种方法的性能很差,因此,为了改善性能,提出一种启发式方法,它发现的是近似最优的规则.在人造数据集上的

实验结果表明,当优化规则包含两个数值属性时,优化兴趣度因子得到的规则比优化可信度得到的规则更有趣.在真

实数据集上的实验结果表明,该算法具有近似线性的可扩展性和较好的精度. 
关键词: 优化规则;关联规则;兴趣度;启发式方法;近似 
中图法分类号: TP311   文献标识码: A 

Association rule was first presented in Ref.[1] and used to find relationships between attributes. The general 
form of association rules is like: C1→C2, where C1 and C2 are called antecedence and consequence, respectively. 
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Both of them are conjunctions over conditions. The form of a condition is like Aj=vj (for categorial or numeric 
attribute)or Aj∈[lj,uj] (for numeric attribute), where Aj is an attribute and, vj, lj and uj are the values in the domain of 
Aj. The quality of a rule is often described by support and confidence. In this paper, we denote them with sup and 
conf, respectively. The support of the rule equals to the support of condition C1∧C2. The support of a condition is 
the ratio of the number of tuples satisfying to the number of the whole tuples. The confidence of the rule is the ratio 
of the support of C1∧C2 to the support of C1. Mining association rules is to find all the rules satisfying the minimum 
support and confidence thresholds. 

The problem of finding optimized association rules was presented first by Ref.[2]. An association rule to be 
optimized usually has the form (A1∈[l1,u1])∧C1→C2, where A1 is a numeric attribute, l1 and u1 are uninstantiated 
variables (that is, they are not assigned with any values). C1 and C2 contain only instantiated conditions (that is, 
there are no uninstantiated variables). The authors proposed the algorithms for determining values for l1 and u1 to 
maximize confidence, support or gain with some thresholds satisfied at the same time. The optimized association 
rule is very useful for finding such intervals of attribute that form strong correlations with other conditions. For 
example, it is known that there are some correlations between income and education level. But we are not certain 
about what range of income makes strong correlation with college experience. In this case, the optimized confidence 
rule income∈[l1,u1]→college will help us to find the answer. 

In this research, we generalize the optimized association rule into allowing uninstantiated numeric attributes in 
both antecedent and consequence. Besides, we replace confidence with interest for finding more interesting rules. A 
naive algorithm for two numeric attributes can be got by a straightforward extension of methods for rules with one 
numeric attribute. However, this results in poor performance with respect to the number of buckets. Therefore, we 
present a heuristic method to get approximate results to improve the performance. 

The remaining sections of this paper are arranged as follows: in Section 1, we discuss the related work, and in 
Section 2, the optimized support rules and the optimized interest rules are defined. The heuristic algorithm, HFOIR, 
is presented in Section 3. In Section 4, the performance of the algorithm is evaluated with synthetic and real data 
sets. Finally, we conclude the paper and clarify the future work in Section 5. 

1   Related Work 

The objective of Ref.[3] was to mine the optimized association rule, the antecedence of which contains two 
numeric attributes. The authors developed the algorithms for computing the rectangular and admissible regions that 
maximize the gain, support or confidence, respectively. In Ref.[4], R. Rastogi and K. Shim developed an algorithm 
for finding the optimized support rule that contains disjunctions over intervals of the same attribute in the 
antecedence. In Ref.[5], they generalized the optimized association rule problem in three ways by permitting the 
antecedence: (a) to contain disjunctions over uninstantiated attributes; (b) to contain an arbitrary number of 
uninstantiated attributes; (c) to contain uninstantiated attributes that can be either categorical or numeric. The 
authors in Ref.[6] presented more efficient algorithms to find the optimized gain rules. They generalized the 
optimized gain association rule problem by permitting the antecedences of rules to contain upto k disjunctions over 
one or two uninstantiated numeric attributes. For one attribute, the algorithm has the time complexity O(nk), where 
n is the number of values in the domain of the uninstantiated attribute. For the rule containing two numeric 
attributes, the authors presented an approximation algorithm based on dynamic programming. Reference [7] also 
dealt with the problem of optimizing disjunction association rules. The authors presented the first polynomial time 
algorithm for the problem of finding such a region maximizing support and meeting a minimum cumulative 
confidence threshold. Running the algorithm on a small random sample was proposed as a means of obtaining near 
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optimal results with a high probability. Theoretical bounds on sufficient sample size to achieve a given performance 
level were proved, and rapid convergence on synthetic and real-world data was validated experimentally. 

2   Problem Formulation 

In our research, association rules are permitted to contain uninstantiated attributes in antecedence and 
consequence. It is different from the problem defined in Refs.[5,6], where the optimized rule was permitted to 
contain two numeric attributes only in antecedence. The general form is as R: A1∈[l1,u1]∧C1→A2∈[l2,u2]∧C2, where 
A1 and A2 are uninstantiated numeric attributes and, l1, u1 and l2, u2 are unistantiated variables. C1 and C2 are 
conjunctions over conditions and they are not allowed to contain uninstantiated variables. For simplicity, R can be 
written without loss of generality as R′: A1∈[l1,u1]→A2∈[l2,u2]. 

Different from confidence or gain measure used in Refs.[2−5], we optimize the rule interest and support in this 
paper. Brin et al first proposed rule interest in Ref.[8]. This metric was defined to be the ratio between the joint 
probability of two variables with respect to their expected probabilities under the independence assumption. The 
interest of R′ is defined as ins(R′)=sup(R′)/(sup([l1,u1])sup([l2,u2])). The authors argued that the interest measure 
was preferable as it directly captured dependence, as opposed to confidence which considered directional 
implication. As a result of measuring significance of dependence via the chi-squared test for independence, they 
reduced the mining problem to the search for a border between dependent and independent itemsets in the lattice. In 
contrast, we try to find the rule maximizing interest or support instead in this paper. 

Definition 1. Let 0<η<1 be the user-specified minimum support threshold. If sup(R′)≥η, we call R′ the ample 
rule. Among all ample rules, the optimized interest rule (OIR) maximizes ins(R′). 

Definition 2. Let λ>1 be the user-specified minimum interest threshold. R′ is interesting if ins(R′)≥λ. Among 
all interesting rules, the optimized support rule (OSR) maximizes sup(R′). 

In short, our goal is to find OIR and OSR. That is, we aim at the instantiation of [l1,u1] and [l2,u2] so that either 
interest or support of R′ is maximized. 

3   FOIR: Finding Optimized Interest Rules 

In this section, we first transform the problem of finding OSR in a two-dimensional space into that of finding a 
particular region in a two-dimensional grid. Then, the problem is simplified into permitting the uninstantiated 
variables to appear only in the antecedence, that is, we instantiate the variables in consequence with some constant 
values. By doing this, the grid is simplified into a vector. In this case, we adapt the algorithm that was proposed in 
Ref.[2] to optimize the confidence rule to find such a subvector from a vector that maximizes its weighted average 
and has its sum satisfying some threshold. Finally, the original problem is resumed by a straightforward extension 
of the method for rules with one numeric attribute. But it results in a poor performance. A heuristic method, with 
which the approximate results are got, is proposed to improve the performance. We discuss the details of the three 
parts in the following subsections. 

3.1   Transformation: Bucketing 

As a preparation of our algorithm, we split the ranges of two numeric attributes into equal-width intervals (that 
is, the size of every interval is the same). We don’t split them into equal-depth intervals (that is, the number of 
tuples falling into every interval is the same) because it needs sorting operation and it is very time consumable. The 
numbers of the intervals on two attributes, v1 and v2, are pre-specified by user. Then the width of every interval on 
A1 is w1=(U1−L1)/v1, where U1 and L1 are the upper and lower bounds of the domain of A1. Similarly, the width of 
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each interval on A2 is w2=(U2−L2)/v2. Let  denote the i-th interval on A)1(
iI 1 and its range is [L1+(i−1)w1,L1+iw1,]. 

Using these intervals, the antecedence in R′ can be approximately represented as: A1∈[s1,s2] (1≤s1≤s2≤v1), if 
 and  hold. In a similar way, R′ is rewritten as [s)1(

1 1s
Il ∈ )1(

1 2sIu ∈ 1,s2]→[t1,t2] if the consequence can be written as 
A2∈[t1,t2] (1≤t1≤t2≤v2). 

The intervals on two attributes intersect to form a two-dimensional grid denoted with H. The size of H is v1×v2. 
A cell of H, c, can be represented by a pair of integers, (s,t) (1≤s≤v1 and 1≤t≤v2), where s is the horizontal 
coordinate of c on H and t is the vertical coordinate. The value of c is the number of tuples falling into c. Further, a 
rectangular region, C, can be represented by two pairs of integers, ([s1,s2],[t1,t2]), where 1≤s1≤s2≤v1 and 1≤t1≤t2≤v2. 
In fact, (s1,t1) denotes the leftmost bottom cell of C, and (s2,t2) denotes the rightmost top one. The boundary of C is 
([L1+(s1−1)w1,L1+s2w1,],[L2+(t1−1)w2,L2+t2w2,]). In the same way, the cell c can also be denoted by ([s,s],[t,t]). 

Now, R′ can be approximately denoted by a region C of H, ([s1,s2],[t1,t2]), if , , , and 
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Where ni,j is the value of cell (i,j). N is the number of the whole tuples. Thus, to find OIR in Definition 1 is to find 
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3.2   Simplification: Finding OIRs with one numeric attribute 

In this subsection, we simplify the problem into that allowing the rule to contain uninstantiated variables only 
in antecedence. Formally, R′ is rewritten as R*: [s1,s2]→[T1,T2], where T1 and T2 are constant integers (1≤T1≤T2≤v2). 
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Proof:  As discussed in Subsection 3.1, to find OIR is to maximize Eq.(2) and satisfy . 

Substituting the items in Eq.(2) with the element of p and r, we get 

Nn
T

Tj

s

si
ji η≥∑∑

= =

2

1

2

1

,

∑∑
==

2

1

2

1

1 s

si
i

s

si
i rp

M
. Since M is fixed for a 

particular H, finding OIR is equal to maximizing 

 ∑∑
==

2

1

2

1

s

si
i

s

si
i rp  (3) 

and satisfying 

 N  (4) p
s

si
i η≥∑

=

2

1

Eq.(3) is the weighted average of the subvector, ( ,…, ) and the left item of Eq.(4) is its sum. 
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In Ref.[2], the authors presented an algorithm to find the optimized confidence rule with linear time 
complexity. They defined the support of R′ as sup(A1). And they viewed the sup(A1) and sup(A1A2) of R′ as the 
horizontal and vertical axes of a two-dimensional space, respectively. Then the initiation of the optimized 
confidence rule corresponds to finding a pair of points with the slope maximized and the difference of their 
horizontal coordinates satisfying the threshold. For our problem, we adapt the algorithm to finding OIRs by 
redefining the meanings of the points. For a vector p=(p1,…, ), it corresponds to a set of points, {q

1vp 0,…, }. If 

the horizontal and vertical coordinates of q

1vq
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Eq.(3). Thus, we get an algorithm of finding OIRs for one uninstantiated numeric attribute with the linear time 
complexity of O(v1). 

3.3   Resume: Finding OIRs with two numeric attributes 

We return to the original problem with two numeric attributes. For the rule with two uninstantiated numeric 
attributes, a naive algorithm to find OIRs, named NFOIR, can be got by a straightforward extension of the algorithm 
discussed in the last subsection. The variables, t1 and t2, in formula 1 are substituted with a possible pair of row. 

Since there are  pairs of rows, NFOIR has the time complexity, O(v2
2v 1

2
2v ). 

A heuristic method is proposed to improve this poor performance. The heuristic idea is based on our 
observation on experiments. For instance, it is assumed that a region d of H is denser (the density of a region is the 
ratio of the sum of all the cells to the number of the cells) than any other region with the same size. A region G 
contains d. Another region G′ does not contains d. It is noticed that the range with the maximum average in G is 
often smaller than that in G′. We give the definition of valid region to describe the regions containing dense 
sub-regions. 

Definition 3. A region in H, denoted with G, is bounded between the t1-th row and the t2-th row (t1≤t2). The 
super region of G in H, G′, is bounded between the t1-th row and the (t2+1)-th row. The ranges of OIRs found in G 
and G′ are ([s1,s2],[t1,t2]) and ([ 1s′ , 2s′ ],[t1,t2+1]), respectively. If either of the following two conditions 
 12121 ],[],[ vssss δ>′′∩  (5) 
 1212 ssss ′−′≥−  (6) 

doesn’t hold, G is a valid region for G′. 
Based the valid regions, the heuristic algorithm (HFOIR) is shown in Fig.1. The sentences between the lines 5 

and line 15 are used to find all valid regions. Its time complexity is O(v1v2). The time complexity of line 16 is 
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2 hold. Therefore, HFOIR gets a much better time complexity than NFOIR. 
The idea that we use to find OSRs is similar to that used in finding OIRs. We can also adapt the algorithms 4.3 

and 4.4 in Ref.[2] to find such a subvector that maximizes its sum and having its weighted average satisfying a 
threshold. For saving space, we will not discuss the detail. 
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Input: H, v1, v2; 
Output: the region that corresponds to the OIR. 
Function HFOIR 
1. vr=[]; %the set of the bounds of valid regions 
2. i=1; 
3. j=1; 
4. vrn=0; % the number of valid regions 
5. while i≤v2

6.    Check ([1, v1], [i, j]) to be valid region or not; 
7.    if yes 
8.       vrn++; 
9.       vr[vrn]=[i, j]; 
10.      i=j+1; 
11.      j=j+1; 
12.   else 
13.      j=j+1; 
14.   endif 
15. endwhile 
16. Apply NFOIR in every valid region; 
17. Get the region with maximum weighted average from the results of Step 16

Fig.1  The pseudocode of HFOIR 

4   Experiments 

4.1   Experiments with synthetic data sets 

In this subsection, we run HFOIR with synthetic data sets to show the advantages of interest as an evaluation 
criteria over confidence on finding the interesting rules with two numeric attributes. 
4.1.1   Generation of data 

First, we prespecify some rules, by which two synthetic data sets are generated. Both of the data sets include 
50000 tuples and comprise of two numeric attributes, A1 and A2. The ranges of both of attributes are between 0 and 
1. For a tuple, the value of A1 is first generated by a uniform distribution. Then the value of A2 is generated 
according to the value of A1 and the corresponding rule. That is, if the value of A1 falls into a region represented by 
some rule, the value of A2 will fall into the same region with a probability, p. Otherwise, the value is generated by a 
uniform distribution. In this experiment, the prespecified rules (the supports, confidences, and interests are 
computed after the data have been generated) are as follows: 
 A1∈[0.4,0.5]→A2∈[0.3,0.4] (p=100%, sup=10%, conf=100%, ins=5.71) (Rule 1) 
 A1∈[0.3,0.4]→A2∈[0.06,0.08] (p=80%, sup=7.6%, conf=81.2%, ins=8.83) (Rule 2) 
 A1∈[0,0.1]→A2∈[0.1,0.3] (p=50%, sup=6.3%, conf=61.6%, ins=2.94) (Rule 3) 
 A1∈[0,0.2]→A2∈[0.1,0.3] (p=50%, sup=14.8%, conf=75.3%, ins=1.98) (Rule 4) 
 A1∈[0.1,0.3]→A2∈[0.1,0.2] (p=80%, sup=16.6%, conf=83.6%, ins=3.09) (Rule 5) 

The first data set, DS1, is generated by Rules 1~3. The second data set, DS2, is generated by Rules 4 and 5 that 
overlap each other on both attributes. During the procedure of producing the data of DS2, if the value of A1 falls 
into the intersection, the rule by which the value of A2 is generated depends on the ratio of p. That is, if the value of 
A1 falls into [0.1 0.2], the ratio of the probability of applying Rule 4 to that of applying Rule 5 is 5/8. After the data 
have been produced, we get the rule intersected by Rules 4 and 5, 
 A1∈[0.1 0.2]→A2∈[0.1 0.2] (sup=8.1%, conf=84.4%, ins=3.12) (Rule 6) 
and the rule united by Rules 4 and 5, 
 A1∈[0 0.3]→A2∈[0.1 0.3] (sup=23.6%, conf=78.8%, ins=2.07) (Rule 7) 
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4.1.2   Experiment results of HFOIR and FOCR 
HFOIR is run with different values of η on DS1. We also run the algorithm to find the optimized confidence 

rule (FOCR), which is got by extending the algorithm in Ref.[2] in a naive way used in NFOIR. The found rules are 
compared in Table 1. For this experiment, the ranges of A1 and A2 are both split into 100 equal-width intervals. All 
the rules got by FOCR have the maximum confidence 1. However, they can not (exactly) reveal the pre-specified 
rules. For example, Rules 8, 10 and 12 reach the maximum confidence by enlarging the consequence of Rule 1. 
Rule 14 even enlarges the consequence to the whole range of A2. Compared with those rules got by FOCR, Rules 9 
and 11 got by HFOIR almost find Rule 2. When the value of η approaches the support value of Rule 1, Rule 13 
almost reveals the antecedence of Rule 1. When the value of η is larger than the support value of Rule 1, Rule 15 is 
got by enlarging a little Rule 1. 

Table 1  Experimental results with DS1 

Rule # Algorithm Antecedence 
(Range on A1) 

Consequence
(Range on A2) Confidence Interest η 

8 FOCR (0.4 0.42) [0.0 0.4] 1 1.87 0.02 
9 HFOIR (0.31 0.37) (0.06 0.07] 0.41 9.3 0.02 

10 FOCR (0.4 0.46) [0.0 0.4] 1 1.87 0.05 
11 HFOIR (0.3 0.4) (0.06 0.08] 0.81 8.85 0.05 
12 FOCR (0.4 0.48) [0.0 0.4] 1 1.87 0.08 
13 HFOIR (0.4 0.5) (0.3 0.38] 0.8 5.73 0.08 
14 FOCR [0 0.13] [0.0 1] 1 1 0.12 
15 HFOIR (0.4 0.62) (0.3 0.45] 0.22 2.52 0.12 

We do almost the same experiments with DS2. The results are show in Table 2. Again, those rules got by FOCR 
enlarge the consequences to reach the maximum confidence. In contrast, those rules got by HFOIR come from the 
prespecified rules having their supports close to the thresholds and having relative high interests. Rule 17 comes 
from Rule 6 because it has the maximum value of interest among all rules. Rule 19 and Rule 21 come from Rule 5 
because it has the maximum interest among all prespecified rules having their supports larger than η. The 
corresponding OIR (Rule 23) comes from Rule 7 when the value of η is approaching its support (0.23). 

Table 2  Experimental results with DS2 

Rule # Algorithm Antecedence 
(Range on A1) 

Consequence
(Range on A2) Confidence Interest η 

16 FOCR (0.11,0.17] [0.0,0.95] 1 1.03 0.05 
17 HFOIR (0.11,0.23) (0.14,0.19] 0.45 3.36 0.05 
18 FOCR (0.18,0.28) [0.0,0.99] 1 1 0.1 
19 HFOIR (0.11,0.26) (0.11,0.19] 0.68 3.15 0.1 
20 FOCR (0.0,0.16) [0.0,1.0] 1 1 0.15 
21 HFOIR (0.1,0.29) [0.1,0.2] 0.84 3.1 0.15 
22 FOCR [0.0,0.21] [0.0,1.0] 1 1 0.2 
23 HFOIR [0.0,0.3] (0.1,0.22] 0.68 2.33 0.2 

 

4.2   Experiment with real-life data set 

In this subsection, we run HFOIR and FOCR on IPUMS[9] to show the feasibility of HFOIR in the real world. 
As discussed in Section 4, HFOIR is a heuristic algorithm and aims at improving the performance. As a tradeoff, it 
gets the approximate results. Therefore, the scalability and accuracy of HFOIR are evaluated with this data set. This 
data set is available on http://www.ipums.umn.edu/. In the following experiments, we only select three numeric 
attributes, age, edurec (educational attainment recode) and inctot (total personal income) from IPUMS. We remove 
the tuples with age≤15 and inctot≤100 from the data set to find some more interesting rules. The ranges of age, 
edurec and inctot are split into 76, 9 and 1 000 equal-width intervals, respectively. The threshold in Definition 3, δ, 
is set to be 0.04, experientially. We run HFOIR on two pairs of attributes, {age,inctot} and {edurec,inctot}, in turn. 
OIRs are compared with the optimized confidence rules(OCRs) in Tables 3 and 4. 
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Compared with OCRs with various η, the corresponding OIRs have smaller ranges on the consequences. They 
are more useful to reveal some matters unknown to us although their confidences are smaller than OCRs’. For 
inctot, OCRs have their lower bounds at 100 and upper bounds at least 100 235, under which most of the people 
(97.8%) have their incomes. Therefore, such rules are trivial for us. In contrast, OIRs have their upper bounds of at 
most 11 226 as well as lower bounds of 100. We can find some interesting information from those rules. For 
example, Rules 25, 27 and 29 tell us that those people at the age of between 15 and 23 are more likely to have 
incomes below 11 236 than those at other ages. Similarly, Rules 31 and 33 tell us that those at the age of beyond 24 
have incomes larger than those at the age of below 24. In short, income increases with the increment of age. There is 
a sharp increment at age 24. 

Table 3  Experimental results with age and inctot 

Rule # Algorithm Antecedence 
(Range on age) 

Consequence 
(Range on inctot) Confidence Interest η 

24 FOCR [23,23] [100,100235] 1 1. 0.02 
25 HFOIR [15,18] [100,3552] 0.65 5.9 0.02 
26 FOCR [15,19] [100,195767] 1 1 0.05 
27 HFOIR [15,21] [100,5471] 0.55 3.2 0.05 
28 FOCR [28,31] [100,207661] 1 1 0.1 
29 HFOIR [15,23] [100,11226] 0.74 1.94 0.1 
30 FOCR [27,34] [100,241039] 1 1 0.2 
31 HFOIR [32,62] (26956,125941] 0.41 1.42 0.2 
32 FOCR [15,38] [100,342326] 1 1 0.5 
33 HFOIR [24,64] (10842,91027] 0.7 1.15 0.5 

Table 4  Experimental results with edurec and inctot 

Rule # Algorithm Antecedence 
(Range on age) 

Consequence 
(Range on inctot) Confidence Interest η 

34 FOCR [2,2] [100 89493] 1 1. 0.02 
35 HFOIR [9,9] (85656 361893] 0.1 3.24 0.02 
36 FOCR [1,2] [100 197685] 1 1 0.05 
37 HFOIR [9,9] (52661 332734] 0.24 2.83 0.05 
38 FOCR [1,3] [100 319306] 1 1 0.1 
39 HFOIR [9,9] (33862 361893] 0.48 2.27 0.1 
40 FOCR [1,6] [100 333885] 1 1 0.2 
41 HFOIR [8,9] (29641 383762] 0.41 1.54 0.2 
42 FOCR [1,7] [100 378007] 1 1 0.5 
43 HFOIR [1,8] [100 18515] 0.63 1.14 0.5 

In IPUMS, the values of edurec are encoded with positive integers. The larger integer denotes higher education 
level. Zero denotes missing value. The codes of educrec and their meanings are shown in Table 5. OIRs and OCRs 
for {edurec,inctot} are listed in Table 4. Again, those OIRs are more useful than OCRs in showing the relationship 
between edurec and inctot. In especial, Rules 35, 37 and 39 recover the strong interreaction of high education level 
and high income. Compared with the above rules, Rule 43 shows the relationship between income and relative low 
education level. In sum, those having higher education levels are more likely to get higher incomes. There is a sharp 
increment of income for those having more than 4 years of college experience. 

Table 5  Codes of educrec and their meanings 
Code Meaning Code Meaning 

0 N/A 5 Grade 10 
1 None or preschool 6 Grade 11 
2 Grade 1, 2, 3, or 4 7 Grade 12 
3 Grade 5, 6, 7, or 8 8 1 to 3 years of college
4 Grade 9 9 4+ years of college 

4.3   Scalability and accuracy 

The graphs in Fig.2 plot the execution time of HFOIR and NFOIR on two pairs of attributes. The numbers of 
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buckets on age and edurec are 76 and 9, and they are fixed during the experiments. The time collapsed for various 
numbers of buckets on inctot is the average of the time for the five various support thresholds appeared in Table 3 or 
Table 4. It can be noticed that the execution time of HFOIR is significantly less than that of NFOIR. HFOIR shows 
an approximately linear scalability with the number of buckets. 

 
 
 
 
 
 
 
 
 

(a) With age and inctot                              (b) With edurec and inctot 
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Fig.2  The scalability of HFOIR and NFOIR 

Figure 3 depicts the sensitivity of accuracy of HFOIR to the number of buckets on inctot and to the minimum 
support threshold. The vertical axis represents the accuracy, which is the ratio of the interest value got by HFOIR to 
that got by NFOIR. Actually, the vertical coordinates of points in Fig.3(a) are the averages of accuracies for the five 
various thresholds. We get most of the accuracies beyond 80% with edurec and inctot, and beyond 90% with age 
and inctot, respectively. Similarly, those in Fig.3(b) are the averages of accuracies for the various numbers of 
buckets. We notice that the accuracies are satisfying except for low supports (0.02 and 0.05). 
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Fig.3  The sensitivity of accuracy of HFOIR 

5   Conclusion 

In this paper, we generalize the optimized association rule problem by allowing two uninstantiated numeric 
attributes in antecedence and consequence. Besides, we replace confidence with interest in order to find more 
interesting optimized rules. We first simplify the problem into that of finding the optimized interest rules with one 
numeric attribute. Then an efficient linear algorithm is adapted for it. Finally, we tackle the original problem by a 
heuristic extension of the efficient algorithm. The experiment results with two synthetic data sets show the 
advantages of interest over confidence on finding the interesting rules. The experiment results with a real-life data 
set demonstrate the approximately linear scalability of HFOIR with the number of buckets. Based on the 
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experiments, we also draw the conclusion that the accuracy of HFOIR is satisfying in most cases. 
In our research, the instantiated regions of all optimized rules are rectangular. However, in practice, the 

admissible regions often bring more information to users[3]. In future, we will further work on how to find OIRs and 
OSRs with admissible regions. 
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