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Abstract:  This paper is mainly concerned with the relation-algebraic aspects of the well-known Region 
Connection Calculus (RCC). It is shown that the complemented closed disk algebra is a representation for the 
relation algebra determined by the RCC11 table, which was first described by Düntsch. The domain of this algebra 
contains two classes of regions, the closed disks and closures of their complements in the real plane, and the contact 
relation is the standard Whiteheadean contact (i.e. aCb iff a∩b≠∅). 
Key words:  region connection calculus; contact relation algebras; RCC11 composition table; complemented 

closed disk algebra; dual-relation set; extensionality 

摘  要: 主要研究熟知的区域连接演算(region connection calculus,简称 RCC)的关系代数方面的性质.证明了补闭

圆盘代数恰好构成 RCC11 复合表的一个表示,其中,RCC11 复合表是由 Düntsch 于 1999 年引入的.补闭圆盘代数由

两类区域构成:一类是实平面中的所有闭圆盘;另一类是实平面中的所有闭圆盘的补的闭包组成.而连接关系为经典

的 Whiteheadean 连接,即对区域 a,b,aCb(表示 a,b 有连接关系)当且仅当 a∩b≠∅. 
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1   Introduction 

Qualitative spatial reasoning (QSR) is an important subfield of AI which is concerned with the qualitative 
aspects of representing and reasoning about spatial entities. A large part of contemporary qualitative spatial 
reasoning is based on the behavior of “part of ” and “connection” (or “contact”) relations in various domains[1,2], 
and the expressive power, consistency and complexity of relational reasoning has become an important object of 
study in QSR. 

Rather than giving attention to all the various systems existing in the market, we shall focus on one of the most 
widely referenced formalism for QSR, the Region Connection Calculus (RCC). RCC was initially described by 
Randell, Cohn and Cui in Ref.[3], which is intended to provide a logical framework for incorporating spatial 
reasoning into AI systems. 

In the RCC theory, the Jointly Exhaustive and Pairwise Disjoint (JEPD) set of topological relations known as 
RCC8 are identified as being of particular importance. RCC8 contains relations: “x is disconnected from y”,“x is 
externally connected to y”, “x partially overlaps y”, “x is a equal to y”, “x is a tangential proper part of y”, “x is a 
non-tangential proper part of y”, “x is a non-tangential proper part of y”, and the inverses of the latter two relations. 
Interestingly, this classification of topological relations has been independently given by Egenhofer[4] in the context 
of Geographical Information Systems (GIS). Since RCC8 is JEPD, it supports a composition table. The RCC8 
composition table appears first in Ref.[5] and coincides with that of Ref.[4]. 

Originating in Allen’s analysis of temporal relations[6,7], the notion of a composition table (CT) has become a 
key technique in providing an efficient inference mechanism for a wide class of theories. Generally speaking, a CT 
is just a mapping CT Rels×Rels→2Rels, where Rels is a set of relation symbols[8]. For three relation symbols R, S 
and T, we say 〈R,T,S〉 is a composition triad in CT if T is in CT (R,S). A model of CT is then a pair 〈U,v〉, where U 
is a set and v is a mapping from Rels to the set of binary relations on U such that {v(R):R∈Rels} is a partition of 
U×U and v(R)°v(S)⊆∪T∈CT(R,S)v(T) for all R,S∈Rels, where ° is the usual relation composition. A model 〈U,v〉 is 
called consistent if T∈CT(R,S)⇔(v(R)°v(S))∩v(T)≠∅ for all R,S,T∈Rels[9]. We call a consistent model extensional 
if v(R)°v(S)⊆∪T∈CT(R,S)v(T) for all R,S∈Rels[9]. Note if a CT has an extensional model 〈U,v〉, then by a theorem 

given in Ref.[10], this CT is the composition table of a relation algebra and 〈U,v〉 is a representation of this relation 
algebra. In what follows, when the interpretation mapping v is clear from the context, we also write U for this 
model. 

To obtain an extensional model of the RCC8 CT, one should restrict the domain of possible regions: an RCC 
model might contain too much regions. Düntsch[5] has shown that the domain of closed disks of the Euclidean plane 
provides an extensional model of the RCC8 CT, namely, the relation algebra determined by the RCC8 CT can be 
represented by the closed disk algebra. One serious problem with these regions is that they are not closed under 
complementation. But, as noted by Stell[11], complement is a fundamental concept in spatial relations. These regions 
are therefore too restrictive. In Ref.[8], with modeling complementation in mind, Düntsch refines RCC8 to RCC11. 
The RCC11 CT is also given and it “turns out that there is a relation algebra A whose composition is represented by 
the RCC11 table. A, however, cannot come from an RCC model as Proposition 8.6 shows, and no representation of 
A is known”[8]. 

The main contribution of this paper is to provide an extensional model for the RCC11 CT. Note models of the 
RCC11 CT are closed under complementation. Our model then contains simply two kinds of regions: the closed 
disks and the closures of their complements in the Euclidean plane, where two regions are connected if they have 
nonempty intersection. Note this domain is clearly a sub-domain of the standard RCC model associated to R2. We 
then have two methods to introduce the RCC11 relations on this domain: the first system of relations is obtained by 
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restriction of the RCC11 relations in the standard RCC model associated to R2, the second can be defined by the 
connectedness relation on this domain. Interestingly these two systems of relations are identical. The binary relation 
algebra generated by the connectedness relation, the complemented closed disk algebra, has 11 atoms that 
correspond to the RCC11 relation and the composition of this algebra is just the one specified by the RCC11 CT. 
Note that hand building of composition tables even for a small number of relations is an arduous and tedious work. 
Although there are more general methods to compute composition tables (see e.g.Ref.[12]), these methods seem not 
appropriate for the present purposes. Our requirements are manifold: the method should be applicable not only for 
determining the composition table, but also for checking the consistency and extensionality of the table. To this aim, 
we propose a specialized approach to reduce the calculations: by using this approach, the work needed can be 
reduced to nearly 1/8 of that needed by the cell-by-cell verification. 

In a word, we answer a problem posed by Düntsch in Ref.[8], about the representation of RCC11 CT, and 
introduce a specified method to reduce the calculation of RCC CT. The relation-algebraic aspects of RCC is riched, 
and the application of RCC theory to the regions with complement is extended. 

The rest of the paper is arranged as follows. In next section, we briefly summarize some basic concepts of 
contact relation algebras and the RCC theory. The notions of dual relation set and dual generating set for RCC 
relations are introduced in Section 3. Based on these notions, a very effective approach to determining the RCC 

weak CT is introduced. Section 4 introduces the complemented closed disk algebra L which is a representation of 
the relation algebra determined by the RCC11 composition table. Summary and outlook are given in the last section. 

2   Contact Relation Algebras 

In this section we summarize some basic concepts of contact relation algebras and the RCC models. For 
contact relation algebras our references are Ref.[8,13−15], and for RCC models[2,3,16−18]. 

Recall in a relation algebra (RA) (A,+,⋅,−,0,1,ο,~,1′), (A,+,⋅,−,0,1) is a Boolean algebra, and (A, ο,~,1′) is a 
semigroup with identity 1′, and  In the sequel, we will usually identify algebras with their .)(, ~~~~~ abbaaa ==

base set. 
An important example of relation algebra is the full algebra of binary relations on the underlying set U, written 

(Rel(U),∪,∩,−,∅,U×U,°,~,1′), where Rel(U) is the set of all binary relations on U, ° is the relational composition, ~ 

the relation converse, and 1′ is the identity relation on U. For R∈Rel(U), and x,y,z∈U we usually write xRy or 
R(x,y) if (x,y)∈R. 

Recall a subset A of Rel(U) which is closed under the distinguished operations of Rel(U) and contains the 
distinguished constants is called an algebra of binary relations (BRA) on U A relation algebra A is called  
representable if it is isomorphic to a subalgebra of a product of full algebras of binary relations, A is called integral, 
if 1′ is an atom of A. 

To avoid trivialities, we always assume that the structures under consideration have at least two elements. 
Suppose that U is a nonempty set of regions, and that C is a binary relation on U which satisfies 

(C1) C is reflexive and symmetric, 
(C2) (∀x,y∈U)[x=y↔∀z∈U(C(x,z)↔C(y,z))]. 
Düntsch et al.[13] call a binary relation C which satisfies (C1) and (C2) a contact relation; and an RA generated 

by a contact relation will be called a contact RA(CRA). A contact relation C on an ordered structure 〈U,≤〉 is said to 
be compatible with ≤ if −(C°−C)=≤. In this paper we only consider compatible contact relations on 

orthocomplemented lattices. Recall an orthocomplmented lattice is a bounded lattice 〈L,0,1,∨,∧〉 equipped with a 
unary complemented operation ′:L→L′ such that x″=x, x∧x′=0, x≤y⇔x′≥y′. 
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Suppose L is an orthocomplemented lattice containing more than four elements and C is a contact relation 
other than the identity. Set U=L\{0,1}. Since 1U is RA definable[8], we can restrict the contact relations C and other 
relations definable by C on U. The following relations can then be defined from C on U: 

( )
1 ~ 1

~ (
( )

# ( ~
( ~) #

#

p

= − = − −
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= =
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We have the following systems of JEPD relations on U[8]: 

RCC5 relations: R5={1′,PP,PP~,PO,DR}; 
RCC7 relations: R7={1′,PP,PP~,PON,POD,ECD,DN}; 
RCC8 relations: R8={DC,EC,PO,1′,TPP,NTPP,TPP~,NTPP~}; 
RCC11 relations: R11={1′,TPP,TPP~,NTPP,NTPP~,PON,PODY,PODZ,ECN,ECD,DC}. 
We summarize some characterizations of these RCC relations. 
Lemma 2.1. Suppose L is an orthocomplemented lattice L with |L|>4 and C is a compatible contact relation on 

L other than the identity. Then for any x,y∈U=L\{0,1} we have the following resuls: 
(1) xPONy iff x∧y>0, x∨y<1, x∧y′>0 and x′∧y>0;  (2) xPODy iff x∧y>0, x∨y=1; 
(3) xPPy iff x<y;        (4) xECDy iff x=y′; 
(5) xECNy iff x<y′ and xCy;      (6) xTPPy iff x<y and xCy′; 
(7) xNTPPy iff x<y and xDCy′;     (8) xPODYy iff y′<x and x′Cy′; 
(9) xPODZy iff y′<x and x′DCy′. 
In what follows, we shall often write respectively −x,x+y,x−y for x′, x∨y and x∧y′. 

2.1   Models of the RCC axioms 

The Region Connection Calculus (RCC) was originally formulated by Randel, Cui and Cohn[3]. There are 
several equivalent formulations of RCC[8,16], we adopt in this paper the one in terms of Boolean connection algebra 
(BCA)[16]. 

Definition 2.1. A model of the RCC is a structure 〈A,C〉 such that 
A1. A=〈A;0,1,′,∨,∧〉 is a Boolean algebra with more than two elements. 
A2. C is a symmetric and reflexive binary relation on A\{0}. 
A3. C(x,x′) for any x∈A\{0,1}. 
A4. C(x,y∨z) iff C(x,y) or C(x,z) for any x,y,z∈A\{0,1}. 
A5. For any x∈A\{0,1}, there exists some w∈A\{0,1} such that C(x,w) doesn’t hold. 
Stell[16] calls such a construction a Boolean connection algebra (BCA), and this conception is stronger than the 

Boolean contact algebra given by Düntsch[5]. 
In particular, the connection in a BCA satisfies Condition (C2) and hence is a contact relation in Düntsch’s 

sense. 
Given a regular connected space X, write RC(X) for the regular closed algebra of X. Then with the standard 

Whiteheadean contact (i.e. aCb iff a∩b≠∅), 〈RC(X),C〉 is a model of the RCC[19]. These models are called standard 
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RCC models[8]. Later we shall refer the standard model associated to a regular connected space X simply RC(X). 
If an RCC model A satisfies the following interpolation property (INT for short) 

xNTPPy→∃z(xNTPPz∧zNTPPy) 

We call it a strong RCC model. Standard RCC models associated to Rn are strong models. 

3   Dual Relation Sets and RCC Composition Tables 

In this section we shall propose a specialized approach for reducing the computational work of establishing an 
RCC CT. This approach can also be applied in determining the consistency and extensionality of an RCC CT. 

3.1   Dual relation set and dual generating set 

Definition 3.1. Let 〈L,′〉 be an orthocomplemented lattice with |L|>4 and let U=L\{0,1}. For two relations R, S 
on U, if (∀x,y∈U)xSy↔xRy′, then S is called the right dual of R and is denoted by Rd. If (∀x,y∈U)xSy↔xRy′, then 
S is called the right dual of R and is denoted by Rd. If (∀x,y∈U)xSy↔x′Ry, then we call S the left dual of R and 
denote it by dR. 

The right dual and the left dual are just two unitary operations on Rel(U). For any X⊆Rel(U), we call the 
relation set X a dual relation set on U if X is closed under the right dual and the left dual. Clearly Rel(U) itself is a 
dual relation set on U, and intersection of dual relation sets on U is also dual on U. We define the dualization of a 

relation set X, denoted by d(X), to be the least dual relation set containing X as a subset. For a dual relation set R, we 
can find a minimal subset S of R such that R=S∪Sd=dS∪S. We call S a dual generating set of R. 

The following propositions summarize some basic properties of these two dual operations and can be easily 
checked. 

Lemma 3.1. Let 〈L,′〉 be an orthocomplemented lattice with |L|>4 and let U=L\{0,1}. Suppose R, S are two 
relations on U. Then the following conditions hold: 

(1) Rd=R°ECD, dR=ECD°R;  (2) Rdd=R, ddR=R, d(Rd)=(dR)d; 

(3) R~d~=dR, (d(R~))~=Rd;   (4) Rd∩S≠∅ iff R∩Sd≠∅; 
(5) dR∩S≠∅ iff R∩Sd≠∅;   (6) For all x,y∈U, (x,y)∈d(Rd) iff (x′,y′)∈R. 
Theorem 3.1. Let 〈L,′〉 be an orthocomplemented lattice with |L|>4 and let U=L\{0,1}. Suppose C is a 

compatible contact relation of U other than the identity and R is a JEPD set of relations in the CRA of U. Then for 
any M,N∈R, we always have the following equations, where °ω denotes the weak composition, namely 

M°ωN=∪{R∈R: R∩M°N≠∅}: 
(1) (M°N)~=N~

°M~; 
(2) (M°N)d=M°Nd, d(M°N)=dM°N, dM°Nd=d(M°N)d; 
(3) (M°ωN)~=N~

°ωM~; 

(4) Suppose R is a dual relation set on U, then (M°ωN)d=M°ωNd, d(M°ωN)=dM°ωN, dM°ωNd=d(M°ωN)d. 

Proposition 3.1. Let 〈L,′〉 be an orthocomplemented lattice with |L|>4 and let U=L\{0,1}. Suppose C is a 
compatible contact relation on U other than the identity. Then for any four RCC11 relations R, S, T, Q, we have 
R°ωS=T°ωQ provided that R°S=T°Q holds, where °ω is the weak RCC11 composition. 

3.2   An approach for reducing the calculations of weak composition table 

The above theorem suggests that, for a dual relation set R, the work of constructing the weak composition table 
can be simplified drastically. 

Suppose R is a dual relation set which is closed under inverse and contains 1′. Let S be a dual generating set of 
R which is also closed under inverse. Denote M={R∈S:R=R~} and R≠1′ and N={R∈S:R≠R~}. Write r,s,m,n to be 
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the number of relations in R,S,M,N respectively. Then s=m+n+1 and n=2k for some k∈N. 
To construct the weak CT, one should compute M°wN for each M,N∈R. Theorem 3.1 shows that the work can 

be simplified. 

There are four cases, namely, (1) M,N∈S; (2) M∈S and N∉S; (3) M∉S and N∈S; (4) M,N∉S. 
For Case (2), since S is a dual generating set of R, we can choose R∈S such that Rd=N. Then M°wN=M°wRd= 

(M°ωN)d by (4) of Theorem 3.1. We reduce (2) to (1). Similarly, Case (3) and Case (4) can be reduced to (1). 

Therefore we only need to check Case (1). This can be further simplified. Suppose M={M1,M2,…,Mm} and 
},,...,,,,{ 2211

~~~
kk NNNNNN=N . 

• For M,N∈M, note Mi°ωMj=(Mj°ωMi)~. The work needed in this case is (m×(m+1))/2; 

• For M∈M, N∈N or M∈N, N∈M, note  and . The work ~~ )( ijji MNNM =ω
~~ )( jiij NMMN =ω

needed in this case is 2m×k; 
• For M,N∈N, note the following equations hold: 

~~~~~~~~~ )(,)(,)( ijjiijjiijji NNNNNNNNNNNN ωωωωωω === . 

The work needed in this case is 2k2+k. 
Therefore the total work needed to construct the weak CT is T=(m+n)(m+n+1)/2=s(s−1)/2. 

3.3   Dual relations of RCC systems 

In this subsection we assume 〈L,′〉 is an orthocomplemented lattice with |L|>4 and let U=L\{0,1}. We also 
suppose C is a compatible contact relation on U other than the identity. 

Table 1  Dual operations on RCC7 

R PP PP~ PON POD DN ECD 1′ 
Rd DN POD PON PP~ PP 1′ ECD
dR POD DN PON PP PP~ 1′ ECD

dRd PP~ PP PON DN POD ECD 1′ 

Table 2  Dual operations on RCC11 

R TPP TPP~ NTPP NTPP~ PON PODY PODZ ECN ECD DC 1′ 
Rd ECN PODY DC PODZ PON TPP~ NTPP~ TPP 1′ NTPP ECD 
dR PODY ECN PODZ DC PON TPP NTPP TPP~ 1′ NTPP~ ECD 

dRd TPP~ TPP NTPP~ NTPP PON ECN DC PODY ECD PODZ 1′   

Example 3.1. RCC5, RCC8 and RCC10 are not dual on L. Note that PPd is not in RCC5, TPPd is not in RCC8, 
and PODd is not in RCC10. But by table 1 and table 2, RCC7 and RCC11 are clearly dual relation sets. 

Moreover, for RCC7 and RCC11, we have S7={1′,PP,PP~,PON} is a dual generating set of R7; and 
S11={1′,TPP,TPP~,NTPP,NTPP~,PON} is a dual generating set of R11. 

By table 1 and table 2, R7 and R11 are closed under inverse and dRd=R~ for R∈S7 or R∈S11. Moreover, for 
M,N∈S7 or R11, by dM°Nd=(dMd)°(dNd)=N~

°M~, we have the following: 

Proposition 3.2. For M,N∈S7 or R11, we have dM°Nd=N~
°M~

By this proposition and Theorem 3.1, we have the following equations: 
(1) PODY°PODY=TPP~

°TPP;   (2) PODY°PODZ=TPP~
°NTPP; 

(3) PODY°ECN=TPP~
°TPP;   (4) PODY°DC=TPP~

°NTPP~; 
(5) PODZ°PODY=NTPP~

°TPP;   (6) PODZ°PODZ=NTPP~
°NTPP; 

(7) PODZ°ECN=NTPP~
°TPP~;   (8) PODZ°DC=NTPP~

°NTPP~; 
(9) ECN°PODY=TPP°TPP;   (10) ECN°PODZ=TPP°NTPP; 
(11) ECN°ECN=TPP°TPP~;   (12) ECN°DC=TPP°NTPP~; 
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(13) DC°PODY=NTPP°TPP;   (14) DC°PODZ=NTPP°NTPP; 
(15) DC°ECN=NTPP°TPP~;   (16) DC°DC=NTPP°NTPP~. 
Note by Proposition 3.1, the relational composition ° in above equations can be replaced by weak composition 

°w. 

We now apply the approach described in Section 3.2 to RCC7 and RCC11. Set t=T/n2 to be the ratio of the 
work needed in our approach to that using the cell-by-cell checking. 

RCC7  r=7, s=4, m=1, n=2, T=6 and t=6/49<1/8; 
RCC11 r=11, s=6, m=1, n=4, T=15 and t=15/121<1/8; 

4   Complemented Closed Disk Algebra 

This section shall provide a representation for the relation algebra determined by the RCC11 CT. In what 

follows, we write by  the (abstract) RCC11 CT given in Ref.[8], which is also called a weak 112: 111111
RRR →×τ

composition table there. 

4.1   When is a composition triad extensional? 

For an RCC model A, or more general, a contact structure 〈L,C〉 on an orthocomplemented lattice, we say a 
composition triad 〈R,T,S〉 in τ11 is extensional if T⊆R°S. In Ref.[8], Düntsch has shown that in general the RCC11 
CT is not extensional. As a matter of fact, he has determined for each cell 〈R,S〉 whether or not R°ωS=R°S is true 

for all RCC models. Our intention now is to give an exhaustive investigation of the extensionality of the RCC11 
table. We want to indicate, for each triad 〈R,S,T〉 with T an entry in the cell specified by the pair 〈R,S〉, whether or 

not the following condition T(x,y)→∃z(R(x,z)∧S(z,y)) holds for all RCC models.∗ 

Table 3  RCC11 weak compositions should check 

°ω TPP TPP~ NTPP NTPP~ PON
TPP ? ? ? ? ? 
TPP~ ?  ?  ? 
NTPP ?  ? ? ? 
NTPP~    ? ? 
PON     ?  

To make the calculations simple, we consider only strong RCC models, namely those models which satisfy the 
INT property. This cannot be too restrictive since stand RCC models of the Euclidean spaces are strong. 

The following proposition suggests the approach specified in Section 3.2 can be used to reduce the 
calculations. 

Proposition 4.1. Suppose A is an RCC model and R, S, T are three RCC11 relations on U=A\{0,1}. Then the 
following conditions are equivalent: 

(1) T⊆R°ωS;  (2) Td⊆R°ωSd;  (3) dT⊆dR°ωS; 
(4) dTd⊆dR°ωSd;  (5) T~⊆S~

°ωT~. 

Proof:  The proofs are straightforward and leave to the reader. 

Recall S11={1′,TPP,TPP~,NTPP,NTPP~,PON}. Let M11={PON}, N11={TPP,TPP~,NTPP,NTPP~}. 
Applying Proposition 4.1 and the approach described in Section 3.2, we need only to calculate the 15 weak 
compositions appeared in table 3. The results are given in table 4. 

The verifications are similar to that given in Ref.[9] for RCC8 weak CT. Moreover, constructions given in 
Ref.[9, table 4, table 5] can also be applied for the RCC11 weak compositions. As a matter of fact, for any cell entry 

                                                             
∗ A similar and more detailed interpretation for RCC8 CT has been given in Ref.[9]. 



 

 

 

李永明 等:RCC11 复合表的表示 2465 

 

R in table 4 which is other than PODY, PODZ, ECD, we have: (1) if a× is attached to R, the construction given in 
table 4 of Ref.[9] for corresponding RCC8 cell entry is still valid; (2) if this is not the case, entreating the 
counter-example constructed in table 5 of Ref.[9] will be enough. In particular, for strong RCC models, we have by 
table 3 of Ref.[9]. 

TPP°NTPP=NTPP°TPP=NTPP°NTPP=NTPP; 
TPP°TPP=TPP∪NTPP; 
NTPP°NTPP~=1′°TPP∪TPP~∪NTPP∪PON∪ECN∪DC; 
NTPP~

°NTPP=1′∪TPP~∪PON∪PODY∪PODZ. 

There are still 11 cell entries to be settled. For the two negative triads, 〈TPP~,PODY×,TPP〉 and 
〈TPP~,PODY×,NTPP〉, take p,q∈U with pNTPPq, set q=q, c′=q−p, then a∧c=p. Note by aTPP~c′ we have aPODYc, 
but there cannot exist a region b with aTPP~b and b≤c since a∧c=p is already a non-tangential proper part of a. For 
the rest positive composition triads, we can choose a region b with the desired property. These constructions are 
summarized in table 5. 

Table 4  Reduced ‘extensional’ RCC11 CT, where T=TPP, N=NTPP, Ti=TPP~, Ni=NTPP~, 
PN=PON, PDY=PODY, PDZ=PODZ 

°ω T Ti N Ni PN 

T T, N 1′, T, Ti, DC, 
PN×, ECN× N Ti×, Ni, PN×, 

ECN×, DC 
T, N, PN, ECN, DC 

Ti 1′, T, Ti, PN×,
PDY×,PDZ  T×, N, PN×, 

PDY×, PDZ  Ti, Ni, PN, PDY, PDZ 

N N  N 1′, T, Ti, N, Ni,
PN, ECN, DC T, N, PN, ECN, DC 

Ni   1′, T, Ti, N, Ni,
PN, PDY, PDZ  Ti, Ni, PN, PDY, PDZ 

PN     1′, T, Ti, N, Ni, PN, DC, 
PDY, PDZ, ECN, ECD 

Table 5  Positive RCC11 weak compositions and instances of the region b 

〈TPP~,PODZ,TPP〉 Set b=a∧c 
〈TPP~,PODZ,NTPP〉 Take m with c′NTPPmNTPPa, set b=a−m 
〈TPP~,PODY,PON〉 Take m=c′, nNTPP(a∧c), set b=m+n 
〈TPP~,PODZ,PON〉 Take mNTPPc′, n=a∧c, set b=m+n 
〈NTPP~,PODY,PON〉 Take mNTPPc′, nNTPP(a∧c), set b=m+n 
〈NTPP~,PODZ,PON〉 Take mNTPPc′, nNTPP(a∧c), set b=m+n 
〈PON,PODY,PON〉 Take mNTPPc′, nNTPPa′, set b=m+n 
〈PON,PODZ,PON〉 Take mNTPPc′, nNTPPa′, set b=m+n 
〈PON,ECD,PON〉 Take mNTPPc′, nNTPPa′, set b=m+n   

4.2   Topological characterization of RCC11 relations in L 

Recall RC(R2), the standard RCC model associated to the Euclidean plane, contains all regular closed subsets 

of R2, and two (nonempty) regions are said to be connected provided that they have nonempty intersection. 

Our domain of regions, denoted by D, is a sub-domain of RC(R2) and contains two classes of regions: the 

closed disks and their complements in RC(R2). We denoted by D1 the class of closed disks, by D2 the class of their 
complements and call for convenience regions in D2 complement disks. Define a binary relation C on D as follows:  
for two regions a,b∈D, aCb if a∩b≠∅. Clearly this relation is a contact relation on U. In contrast with the closed 
disk algebra for RCC8 table given in Ref.[8,13], we call the contact relation algebra on this domain the 

complemented closed disk algebra, written L. In what follows we shall show this CRA is finite and contains RCC11 
as its atoms, and it is indeed a representation of the relation algebra determined by the RCC11 CT. 

Write L=D∪{∅,R2}. Then L with the usual inclusion ordering is an orthocomplemented lattice. Based on the 
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contact relation C on D, we can define RCC11 relations on D (see Section 2 of this paper). 
The following theorem gives a topological characterization of these relations: 
Theorem 4.1. The RCC11 relations on D have the following characterization: 
(1) x1′y iff x=y; 
(2) xTPPy iff x⊆y, x≠y and ∂x∩∂y≠∅; 
(3) xTPP~y iff x⊇y, x≠y and ∂x∩∂y≠∅; 
(4) xNTPPy iff x⊆y, x≠y and ∂x∩∂y≠∅; 
(5) xNTPP~y iff x⊇y, x≠y and ∂x∩∂y≠∅; 

(6) xPONy  iff x°∩y°≠∅, ,, xyyx ⊆/⊆/  and x∪y≠R2; 

(7) xPODYy iff x°∩y°≠∅, ∂x∩∂y≠∅ and x∪y≠R2; 

(8) xPODYy iff x°∩y°≠∅,  ∂x∩∂y≠∅ and x∪y≠R2; 

(9) xECNy iff x°∩y°≠∅, x∩y≠∅ and x∪y≠R2; 

(10) xECDy iff x°∩y°≠∅, x∩y≠∅ and x∪y≠R2; 

(11) xDCy iff x∩y≠∅. 
Proof:  The proofs are routine and leave to the reader. 
From this theorem we know that these relations on D are precisely the restrictions of the corresponding RCC11 

relations in RC(R2) to D. 

4.3   The composition of the complemented closed disk algebra 

Now we shall show that the composition operation of L is precisely that one specified by the RCC11 CT. What 
we should do is to indicate, for each triad 〈R,T,S〉 with T an entry in the cell specified by the pair 〈R,S〉, whether or 
not the following condition hold: T(x,y)→(∃z∈D)(R(x,z)∧S(z,y)). 

Note the approach described in Section 3.2 is also valid for the present purpose. This is due to the facts that (i) 
RCC11 relation on D is a dual relation set which contains 1′ and is closed under inverse; (ii) 
S11={1′,TPP,TPP~,NTPP, NTPP~,PON} is a dual generating set which is also closed under inverse; (iii) 
Proposition 4.1 is still valid for L. As a result, we need only to calculate the 15 compositions appeared in table 3. 

To begin with, we first show the NTPP relation on D satisfies the interpolation property. 
Lemma 4.1. Given any two regions a, c in D with aNTPPc, there exists another region b∈D with 

aNTPPbNTPPc. 
Proof:  By the topological characterization of the NTPP relation given in Theorem 4.1, we know that 

aNTPPc if and only if a⊂c°. There are three cases: 
Case I: a,c are closed disks. In this case, ∂a and ∂c are two non-tangential circles and ∂a is inside ∂c. Then we 

can find another circle B between these two circles. Taking b as the closed disk bounded by B, then b satisfies the 
desired property. 

Case II: a,c are complement disks. In this case, ∂a and ∂c are two non-tangential circles and ∂c is inside ∂a. 
Then we can find another circle B between these two circles. Taking b as the complement disk bounded by B, then b 
satisfies the desired property. 

Case III: a is a closed disk and c is a complement disk, ∂a and ∂c are two separated circles and the distance 
between them is non-zero. Then we can find another circle B such that ∂a is inside B and B is separated from ∂c. 
Taking b as the closed disk bounded by B, then b satisfies the desired property. 

Proposition 4.2. In the complemented closed disk algebra L the following equations NTPP°NTPP=NTPP, 
TPP°NTPP= NTPP and NTPP°TPP=NTPP hold. 

Proof:  Note the “⊆” part of these equations follows directly from the definitions and the first equation is then 
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clear by above lemma. 
For the second equation, suppose aNTPPc in D, we want to find b such that aTPPbNTPPc. There are three 

cases: 
Case I: a,c are closed disks. In this case, ∂a and ∂c are two non-tangential circles and ∂a is inside ∂c. Then we 

can find another circle B such that ∂a is internally tangent to B and B is inside the circle ∂c. Taking b as the closed 
disk bounded by B, then b satisfies the desired property. 

Case II: a,c are complement disks. In this case, ∂a and ∂c are two non-tangential circles and ∂c is inside ∂a. 
Then we can find another circle B such that B is internally tangent to ∂a and ∂c is inside B. Taking b as the closed 
disk bounded by B, then b satisfies the desired property. 

Case III: a is a closed disk and c is a complement disk, ∂a and ∂c are two separated circles and the distance 
between them is non-zero. Then we can find another circle B such that ∂a is internally tangent to B and B is 
separated from ∂c. Taking b as the closed disk bounded by B, then b satisfies the desired property. 

The proof of the last equation is similar. 
The following proposition proves the remainder 12 equations in CCA. 
Proposition 4.3. In the complemented closed disk algebra L, the following composition equations hold. 
(C-1) TPP°TPP=TPP∪NTPP; 
(C-2) TPP°TPP~=1′∪TPP∪TPP~∪PON∪ECN∪DC; 
(C-3) TPP°NTPP~=TPP~∪NTPP~∪PON∪ECN∪DC; 
(C-4) TPP°PON=TPP∪NTPP∪PON∪ECN∪DC; 
(C-5) TPP~

°TPP=1′∪TPP∪TPP~∪PON∪PODY∪PODZ; 
(C-6) TPP~

°NTPP=TPP∪NTPP∪PON∪PODY∪PODZ; 
(C-7) TPP~

°PON=TPP~∪NTPP~∪PON∪PODY∪PODZ; 
(C-8) NTPP°NTPP~=1′∪TPP∪TPP~∪NTPP∪NTPP~∪PON∪ECN∪DC; 
(C-9) NTPP°PON=TPP∪NTPP∪PON∪ECN∪DC; 
(C-10) NTPP~

°NTPP=1′∪TPP∪TPP~∪NTPP∪NTPP~∪PON∪PODY∪PODZ; 
(C-11) NTPP~

°PON=TPP~∪NTPP~∪PON∪PODY∪PODZ; 
(C-12) PON°PON=1′∪TPP∪TPP~∪NTPP∪NTPP~∪PON∪PODY∪PODZ∪ECN∪ECD∪DC. 

Proof:  Since regions in D are either closed disks or the complement of closed disks, the above equations can 
be verified using elementary theory for circles (such as, internally tangent, externally tangent, containment, disjoint, 
etc.). 

As a result, we know that the complemented closed disk algebra has 11 atoms and its composition is just as the 
one given in the RCC11 CT. 

Theorem 4.2. The relation algebra determined by the RCC11 CT can be represented by the complemented 
closed disk algebra. 

5   Summary and Outlook 

This paper explores several important relation-algebraic questions arising in the RCC11 theory. For the RCC11 
table, we have shown in Section 4 of this paper the complemented closed disk algebra, whose domain contains only 
the closed disks and closures of their complements in the real plane, is an extensional model. 

Future work will investigate the contact relation algebra of various small domains of regions which admits 
more operations than complementation, e.g., finite unions or finite intersections. In particular, the (complemented) 
Worboys-Bofakos model[20] deserves a detailed study with the tools of relation algebra. Note that the 9-intersection 
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principle can be applied to these domains, we can compare the expressivity of RA logic with that of the 
9-intersection model. 
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