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Abstract: This paper offers arguments for the provable security of a class of ID-based signature schemes called
ID-based generic signature schemes in the random oracle model. The theoretical result can be viewed as an
extension of the Forking Lemma due to Pointcheval and Stern for ID-based signature schemes, and can help to
understand and simplify the security proofs of previous work such as Cha-Cheon’s scheme, Hess’s scheme-1,
Cheon-Kim-Yoon’s scheme, and so on.
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1 Introduction

ID-based public key cryptography (ID-PKC) is a paradigm proposed by Shamir! in 1984 to simplify key
management procedures of traditional certificate-based PKI. In ID-PKC, an entity’s public key is derived directly
from certain aspects of its identity, such as an IP address belonging to a network host, or an e-mail address
associated with a user. Private keys are generated for entities by a trusted third party called a private key generator

(PKG). The direct derivation of public keys in ID-PKC eliminates the need for certificates and some of the
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problems associated with them.
In 2001, the first entire practical and secure ID-based encryption scheme was presented by Boneh and
Franklin'. Since then, a rapid development of ID-PKC has taken place. Using bilinear pairings, many identity

based primitives based on pairings were proposed: digital signatures®®,

authenticated key exchange,
non-interactive key agreement, blind and ring signatures, signcryption, and so on. ID-Based public key
cryptography has become a good alternative for certificate-based public key setting, especially when efficient key
management and moderate security are required.

Evaluating the “security” is a sticking point for the construction of new cryptographic scheme. Provable
security based on complexity theory provides an efficient way for providing the convincing evidences of security.
However, provable security standard model often is at the cost of an important loss in terms of efficiency!”. In
1993, Bellare and Rogaway!® provided the so-called “random oracle model” to help security proofs. In this model,
concrete cryptographic objects, such as hash functions, are identified with ideal random objects. Since then, security
proof in random oracle model becomes very popular for the security arguments of cryptographic scheme.

The general security notion for standard signature schemes is existential unforgeable secure under adaptively
chosen-message attacks (EUF-ACMA)!). In 2000, Pointcheval and Stern!'” offered some security arguments for
standard signature schemes in the random oracle model, and provided the famous Forking Lemma for generic
signature schemes. An appropriate extension of EUF-ACMA for ID-based setting exists in Ref.[3], where the
security notion of an ID-based signature scheme is defined to be existential unforgeable secure under adaptively
chosen message and 1D attacks (EUF-ACMIA). Recently, Bellare, et al.!'"! provided security proofs for a class of
ID-based signature schemes that can be constructed from a special kind of signature schemes called convertible
signature schemes.

Inspired by Pointcheval’s results, this paper presents security arguments for a class of ID-based signature
schemes which we call ID-based generic signature schemes (ID-GSSs) in the random oracle model. The rest of this
paper is organized as follows. In Section 2, we recall some preliminary work. In Section 3, we define a special kind
of ID-based signature schemes as ID-GSSs, and construct a conversion from an ID-GSS to a generic signature
scheme. In Section 4, we offer security arguments for ID-GSSs in the random oracle model. As an example, we

[4]

show that Hess’s scheme-1'" can be easily proved to be secure with our theory in Section 5. Finally, we end the

paper with a brief conclusion.

2 Preliminaries

2.1 Digital signature schemes and forking lemma

Definition 1. A digital signature scheme is defined by a triple of polynomial-time algorithms!'®’;

. Kgen: On input 1¥ where Kk is the security parameter, the randomized key generation algorithm returns a
pair (pk,sk) of matching public and secret keys.

. Sign: On input secret key sk and a message m, the possibly randomized signing algorithm returns a
signature o.

. Verify: On input public key pk, mand a signature o, the deterministic verification algorithm tests whether
ois a valid signature for m corresponding pk.

The advantage in existentially forging of an adversary F, given access to a signing oracle §.) and a hash oracle

H(.), is defined as
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(pk, k) < KGen(1¥), (m o) « ASHO (pk):
Verify(m o), pk) =1, (Mo) ¢ S '

where Sjg is the query and answer list coming from §(.) during the attack. The probability is taken over the coin

Adv, (K) = Pr

tosses of the algorithms, of the oracles, and of the forger.

Definition 2. A digital signature scheme {KGen,Sign,Verify} is said to be EUF-ACMA, if for any adversary F,
Advi(K) is negligible.

Pointcheval and Stern presented a notion of generic signature scheme which, given the input message m,
produces a triple (oy,h,03), where o7 randomly takes its values in a large set, h is the hash value of (m,07) and o,
only depends on o7, the message m and h. Each signature is independent of the previous ones. They provided the
famous Forking Lemma:

Lemma 1 [Forking Lemma]*®". In the random oracle mode, for a generic signature scheme, let F be a Turing
machine whose input only consists of public data. Assume that F can produce a valid signature (m,o,h,0,) within a
time bound T by un-negligible probability €>10(ngt+1)(ny+ns)/q, where Ny and Ng are the number of queries that F can
ask to the random oracle and the signing oracle respectively. If the triples (o1,h,05) can be simulated without
knowing the secret key, with an indistinguishable distribution probability, then there is another machine which has
control over the machine obtained form F replacing the signing oracle by simulation and produces two valid
signatures (m,o1,h,03) and (M, 01,h’, o7 ) such that h=h' in the expected time less than 120686-n, T/&.

2.2 Bilinear pairings

Let (G;,1),(G,-) be two cyclic groups of order g, €:G, xG, — G, be a map with the following properties:

1. Bilinear: P,QeG,, a,feZ, €(aP,pQ)= é(P,Q%;

2. Non-degenerate: If P is a generator of G, then € (P,P) is a generator of G;

3. Computable: There is an efficient algorithm to compute € (P,Q) for any P,QeG,.

Such an bilinear map is called an admissible bilinear pairing!”!. The Weil pairings and the Tate pairings of
elliptic curves can be used to construct efficient admissible bilinear pairings.

Definition 3. Let P be a generator of G;. The computation Diffie-Hellman problem (CDHP) is to compute abP
for any given P,aP,bPeG;., where a,beZ,. An algorithm F solves CDHP with the probability ¢, if

Pr[F(P,aP,bP)=abP]>¢.

where the probability is over the random choice of generator P€G;, the random choice of a,beZg, and random coins
consumed by F.

No probabilistic polynomial time algorithm is known to solve CDHP with a non-negligible advantage so far.

The hardness seems to be a reasonable assumption for the security proofs of cryptographic schemes.

3 |D-Based Generic Signature Schemes

Definition 4. An ID-based signature scheme consists of four polynomial-time algorithms!®’:

. Setup: The parameters generation algorithm takes as input a security parameter keN (given as 1¥) and
returns a master key S and system parameters (2. This algorithm is performed by PKG. PKG publishes 2
while keeping S secretly.

. Extract: The private key generation algorithm takes as input an identity IDe{0,1}* and extracts the
secret key Dyp. This algorithm is performed by PKG. PKG gives Dyp to the user by a secure channel.

. Sign: The signing algorithm takes as input a private key D;p and a message m and outputs a signature o.

. Verify: The verification algorithm takes as input an identity ID, a message m and a signature &, and

outputs 0 or 1. The later implies Jis a valid signature.
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An ID-based digital signature scheme is said to be EUF-ACMIA, if for any polynomial-time adversary F, the

advantage defined by

Adv. (ky=pi| 2 Setup(1¥), (ID,m,8) « F 390 (para) ;}
verify(m,6),ID) =1, (ID,m,0) ¢ S, (ID,.)  E;y
is negligible, where S;g and Ejjg are the query and answer lists coming from Sign oracle §.) and Extract oracle E(.)
respectively during the attack. In the random oracle model, the attackers also have the ability to query to the random
oracles. The probability is taken over the coin tosses of the algorithms of the oracles and of the forger.

Many existed ID-based signature schemes that are constructed with bilinear pairings, such as Ref.[3-5], have
the same Setup and Extract algorithms as follows:

. Setup: Take as input a security parameter KeN, and returns a master key S and system parameters
02={G,,G,,q,&P,P,,,,H,H,), where (G,,+),(G,,") are cyclic groups of order g, €:G,xG, > G, is an
admissible bilinear map, H,:{0,1}"— G, and H, are hash functions.

. Extract: Take as input an identity IDe {0,1}*, computes Qp=H;(ID),D;p=5Qp, and lets Dp be the user’s
secret key.

Generally speaking, the user’s public key for verification is in fact Qpp=H;(ID). Hence, we may sometimes use

Verify(Qp,m,d) and (Qp,m,d) instead of Verify(ID,m,8) and (ID,m, ) respectively.

In this paper, we consider a special kind of ID-based signature schemes, which given input a message m,
produce triples (o7,h,03), where o7 randomly takes its values in a large set, h is the hash value of (m,07) and o3 only
depends on o7 and h for a fixed private key Djp. Each signature is independent of the previous ones. That is, we
assume that no o can appear with probability greater than 2/2% where k is the security parameter. We call this kind
of pairing-based schemes as |D-based generic signature schemes (ID-GSSs).

Let 2={Setup,Extract,Sgn,Verify} be a standard ID-based signature scheme, we can construct an ordinary
signature scheme /={KGen,Sgn’,Verify'} as following:

Construction

e KGen: On input 1% set (5,£2)«Setup(1), pick randomly 1De{0,1}", compute Q=H,(ID), D=sQ, and
return D as private key and (£2,Q) as public key.

. Sgn’: On input private key D and a message m, set £2 as the system parameters, compute and output
&=Sgn(D,m).

. Verify’: On input public key (£2,Q), a message m and a signature &, set £2 as the system parameters,
compute and output Verify(Q,m,9).

Here, we say that /”is a signature scheme constructed from 2.

Lemma 2. If a standard ID-based signature scheme 2 is an ID-GSS, then the signature scheme constructed

from 2'is a generic signature scheme.

Proof: Let I={KGen,Sgn',Verify’} be the ordinary signature scheme constructed from 2. For a key pair
((€2Q),D) generated by KGen(lk), given the input m, the signing algorithm of / produces a signature ¢ which is the
same as that produced by the ID-based signing algorithm of X with the system parameters being (2 and user’s
identity being ID. X'is an ID-GSS. Hence & is a triple (o71,h,03), where o7 randomly takes its values in a large set, h
is the hash value of (m,o7) and o, only depends on o, the message m and h. Each signature is independent of the

previous ones. That is, /"is a generic signature scheme.
4 Provable Security of ID-Based Generic Signature Schemes

In this section, we extend the results on the security of generic signature schemes to ID-GSSs. Let
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2={Setup,Extract,Sgn,Verify} be an ID-GSS, 7={KGen,Sign’,Verify’} be the generic signature scheme that is
constructed from 2.

Lemma 3. In the random oracle model, assume that there is an adversary F, whose input only consists of
public data, and can produce a valid signature (ID,m,o1,h,07) of 2, within a time bound T by un-negligible
probability &. We denote by Ny, Ns and Ng the number of queries that F, can ask to the oracles H;(.), Sign(.) and
Extract(.) respectively. Then there is another adversary F; who can produce a valid signature of 7, within the
expected time T+(Ny;+NstNg)t;+ngt, with the un-negligible probability &/n,;, where t; denotes a scalar multiplication
in (G;,*) and t, denotes a signing operation.

Proof: Without any loss of generality, we may assume that for any ID, F, queries H;(.) with ID before ID is
used as (part of) an input of any query to Hs(.), Extract(.) and Sign(.). From F, we can construct a probabilistic
algorithm F, as follows:

1. Achallenger C runs ((.Q,Q),D)<—KGen(1k), where 2={G,,G,,q, & ,Ppu,Hi,H,}, and gives (£22Q) to F,.

2. Fypicks u, 1<usgny and € Zyi=1,2,...,ny randomly.

3. F;runs Fywith input . During the execution, F; emulates F,’s oracles as follows:

. H,(.): For input ID, F; checks if H;(ID) is defined. If not, he defines

. H](ID)={Q’ I 3 , and sets ID;«—ID, i«—i+1. F; returns H,(ID) to F,.

XP, i#u

. H,(.): For input (m,oy), F; checks if Hy(m,o7) is defined. If not, F, picks ceZ, randomly, sets
H,(m,o7)=c. F; returns H,(m,o7) to F.

. Extract(.): For input ID;, if i=u, then abort. Otherwise, F, lets Di=xX;Py be the reply to F,.

. Sign(.): For ID; and message m, if i=u, F; computes Di=X;Ppy, (01,h,05)=Sgn(D;,m). Otherwise, F,
requests to his own signing oracle Sign’(.) with input m and gets (oy,h,03). F; replies to Fy with
(o1,h,07).

4. If Fy’s output is (ID,,m",o,,h",0,) satisfying: Verify(ID,,m’,o;,h",5;)=1, and i=u, F, can get a

forgery (M',o,,h",0,) of I"corresponding to (£2,Q).

Fi’s running time is roughly the same as F’s running time plus the time taken to respond to F,’s oracle
queries. If we neglect operations other than signing and scalar multiplication in (Gy,+), the total running time is
bounded by T+(np+nstng)t;+ngt,. Because U is chosen randomly, F; can output a forgery corresponding to (£2,Q) of
["with probability &/np;.

Theorem 1. In the random oracle mode, let Fy be an adversary whose input only consists of public data, and
can produce a valid signature (ID,m,0y,h,05) of X within a time bound T by the un-negligible probability
&10n,(Ngt1)(Npp+Ng)/g, where Ny, Ny, Ng and N are the number of queries that Fy can ask to the oracles H(.),
H,(.), Sign(.) and Extract(.) respectively. If the triples (o7,h,0») can be simulated without knowing the secret key
with an indistinguishable distribution probability, then there is another machine F, given Qe G, , which can
produce two valid signatures (m,o1,h,03) and (m,01,h’, 03, ) of " for public key (£2,Q), such that h=h’ in the expected

time less than 120686-Np;-Npo(T+(NK+NgtNe)t+ndy)/e, where t; denotes a scalar multiplication in (Gj,+) and t,
denotes a signing operation.

Proof: With Lemma 3, from F,, we can construct an adversary F;, given (£2,Q), which can produce a valid
signatures (M, oy,h,05) of I” within the expected time T+(np+ngtng)t;+Nngt, with the un-negligible probability &/ny,.
With Lemma 1, there is a machine F, which has control over the machine obtained from F; replacing interaction

with the signer by simulation, and can produce two valid signatures (m,o1,h,03) and (m,oy,N', o5 ) such that h=h’ in

the expected time less than 120686-N,;-Npo(T+(Np+HNgtNE)t N4/ €.
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5 Applications

As an example, we show that Hess’s scheme-1"! can be proved to be secure with our theorem. The scheme
consists of four algorithms:

. Setup: Takes as input a security parameter KeN, output a master key S and system parameters
02={G,,G,,q,6P, PobsHi,H,) , where (G, 1), (G,,+) are cyclic groups of order d, €:G, xG, > G, isan
admissible bilinear map, H;: {0,1}*—> Gl* and H,: {0,1 }*sz—> Z; are hash functions.

. Extract: Takes as input an identity IDe {0,1}*, compute Q;p=H,(ID), D;p=sQp, and let Dp be the user’s
secret key.

. Sign: For input secret key Dip and a message m, select tete Z; randomly, compute r=&P,P)',
c=H,(mr), U=c-Dp+t-P, and output (r,c,U).

. Verify: For input of an identity 1D, a message m and a signature (r,c,U), the verifier computes c=H,(m,r),
and checks whether r=&U,P)&H,(ID),P,;,) ™.

Obviously, Hess’s scheme-1 is an ID-GSS. We now prove that the triples (r,c,U) can be simulated without the
knowledge of the signer’s secret key.

Lemma 4. Given (G,,G,,0,&P, Pop =SP.H;,H,) and an identity ID, Q=H,(ID), D=sQ, the following

distributions are the same.

* U'er G,
teg Z,
ce. 7 Ceg Z,
s={(r.cU) "0 L and &'={(r,cU)U =U’
r=&P.P) r=&U.P)&Q.P,,) "
U =cD +tP =l

Proof: First we choose a triple (a,5,%) from the set of the signatures: Let ae G, , peZy, yeG, such that

a=§y,P)&Q, Ppub)’ﬂ #1. We then compute the probability of appearance of this triple, following each distribution

of probabilities:
&P,P) =a .
PI‘[;[(I’,C,U):(a,ﬂ,}/)]:PI't%O C:ﬂ 3 >
h a(q-1)
c-D+t-P=y
a=r= é(U 's P)é(Q, Ppub)7C
Pry[(r,cU) =(a,B,7)]="Pr,., c=p = .
’ 1 U_U'- a@-1
=Uu =7

That is, we can construct a simulator M, which produces triples (r,c,U) with an identical distribution from
those produced by the signer as follows:

. Simulator M: For input (G,,G,,q,& P, P =SP,H,H,), H|(ID) and a message m, randomly choose

U'eG,, ceZy, and set U=U’ and r=&U,P)(éH,(ID),P,;,)) . In the (unlikely) situation where r=1,
we discard the results and restart the simulation. Then it returns the triple (r,c,U).

Theorem 2. In the random oracle mode, let F, be an adversary who performs, within a time bound T, an
existential forgery against the Hess’s scheme-1, with probability &>10n,;(Ngt1)(Np+Ng)/Q, Where Ny, Ny, Ng and Ng
are the number of queries that F, can ask to the oracles H;(.), Hy(.), Sign(.) and Extract(.) respectively. Then the
computational Diffie-Hellman problem in G; can be solved within the expected time less than 120686-ny;-

No(T+H(NR+NgtNE)t +ngty)/ &, where t; denotes a scalar multiplication in (G,,+) and t, denotes a signing operation.
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Proof: From Lemma 4, we can see that a valid signature of Hess’s scheme-1 (r,c,U) can be simulated without
knowing the secret key, with an indistinguishable distribution probability. With Theorem 1, using adversary Fy,
we can construct another adversary Fj, given Qe Gl* , and produce two valid signatures (m,r,c,U) and (m,r,c’,U")
such that c=C’ in expected time less than 120686-N,;-Npy(T+H(Np+NstNE)t NG/ €.

From the adversary F;, we can construct a probabilistic algorithm F, such that F, computes abP on input of
any given P,aP,bP e Gl* as follows:

1. A challenger C runs Setup(lk) to generate system parameters 2=(G,,G,,q,6,P,P,;,,H,,H,) and gives
F,with P,aP,bPeG, .

2. F,sets Pp=aP, and 2=(G,,G,,q,6,P,aP,H H,).

3. F,runs F, with input (£2,bP) until F; outputs two valid signatures (mr,c,U) and (mr,c’,U’) such that

c=C'.

4.  F, can compute and output abP as follows:

&=(c-c")"" mod g, abP=£U-U").

Analogical results can be obtained for many such schemes, such as Cha-Cheon’s scheme™, Cheon-Kim-Yoon’s
schemel!, and so on.

In fact, the reduction efficiency of our proof is roughly the same as that of the proofs proposed by the authors
in the original papers® .. For instance, in Ref.[4], the authors proved that CDHP can be solved in the expected time
C-Npy-Npy T/ € if there is an ACMA adversary making an existential forgery with probability £>a-n,;-nppny/q in the
random oracle model, where a,ceZ>' are constants. However, the security proof in Ref.[4] seems long and too

abstruse.
6 Conclusion

This paper successfully extends the Forking Lemma for ID-based signature schemes. Using the result of this
paper, a large class of ID-based signature schemes, which we called 1D-based generic digital signature schemes, can

be proved to be secure easily in the random oracle model.
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