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Abstract: Mobile IP is a simple and scalable global mobility solution. This paper numerically analyzes the 
characterization of handoff for Mobile IP: the probability distribution about packet loss and packet disorder. By 
using the result, the radius of overlap region is optimized. The illustrations show that the model precisely reflects 
the handoff behavior. The probability is very helpful to evaluate the handoff performance. 
Key words: mobile IP; cell overlap; packet loss; packet disorder 

摘  要: 移动 IP 是一种简单的、可扩展的全球移动管理方案.从理论上分析了移动 IP 的切换特征分组丢失

和分组乱序的概率分布.应用这个结果,优化了重叠区域半径.实例表明,模型准确地刻画了移动 IP 的切换行为.结果

对于评价移动 IP 的切换性能非常有用. 
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1   Introduction 

Mobile IP[1,2] is a solution for mobility on the global Internet by IETF. It allows a Mobile Node (MN) to 
change its point of attachment from an old Access Router (oAR) to a new Access Router (nAR), across media of 
similar or dissimilar type; and allows Correspondent Node (CN) to send IP packets to the MN transparently. With 
the help of Mobile IP, people can freely access many different kinds of services in Internet. Although there are many 
advantages using Mobile IP, its limitations are also very obvious. For example, when MN moves from one place to 
another, the whole handoff procedure might go with these phenomena, e.g., packet loss, packet disorder, and etc. 
These phenomena badly affect handoff performance, and they perhaps have some relationships with the following 
factors: (1) the cell layout, e.g., cell overlap vs. no overlap; (2) the handoff type, e.g., soft handoff vs. hard handoff; 
(3) the handoff initiation strategies[3], e.g., Eager Cell Switching (ECS) strategy vs. Lazy Cell Switching (LCS) 
strategy; (4) movement velocity etc.  

In the case of no overlap, MN doesn’t receive out-of-sequence packets, however, it will suffer packet loss, 
which can be analyzed according to the handoff delay. In the case of cell overlap, if adopting hard handoff---i.e. , an 
MN firstly disconnects with oAR before it makes a handoff, this case is similar to no overlap. However, if adopting 
soft handoff---i.e., MN keeps connections with oAR and nAR simultaneously when it carries out a handoff, this case 
is especially complicated.  

The packet loss also deeply depends on the handoff initiation strategies, e.g., the packet loss might be much 
less adopting ECS strategy than LCS strategy. The basic idea of ECS strategy is that MN should carry out Layer 3 
handoff upon receiving a new router advertisement. The detailed description can be found in Ref.[3]. Note that for 
LCS strategy, it is easy to know that the handoff performance in the case of cell overlap is the same to the case of no 
overlap. 

Some research results on performance analysis of Mobile IP can be found in Refs.[4−6] . However, as said in 
Ref.[7], these results are carried out mostly by simulations. In addition, they pay more attention to the handoff delay 
than packet loss and packet disorder; moreover, the handoff performance in the case of cell overlap is rarely 
analyzed. 

In this paper, considering that MN carries out soft handoff which adopts ECS strategy, we will model and 
analyze packet loss and packet disorder. As said in Ref.[8], in the case of Internet access, the average number of 
these metrics is not very important, and their distributions are much more interesting. Therefore, we try to get the 
distributions of number of the lost packets and out-of-sequence packets.  

This paper is organized as follows: In Section 2, we outline handoff procedure for Mobile IP. Then, in Section 
3, we model and analyze packet loss, packet disorder, and get a general expression about their probabilities. In 
Section 4, by using the results of Section 3, we optimize the radius of overlap region. In Section 5, some 
illustrations show that our model conforms to our observation perfectly. Finally, Section 6 concludes the paper with 
some further research directions. 

In this paper, we assume that a Cell is equivalent to an AR domain, and use the concepts in Mobile IPv6, but 
the analysis method and the results are suitable for Mobile IPv4. 

2   Handoff Process for Mobile IP 

2.1   Basic definitions 

 Now let us firstly give the basic definitions in order to make the further analysis. 
 Because there is no buffer and forwarding strategy in basic Mobile IP[1,2], some packets will be lost during the 

handoff procedure. Therefore, we define: 
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Number of lost packets: the number of packets resided in oAR, which won’t be forwarded to MN due to 
handoff. It is denoted by N. 

When MN carries out soft handoff, it will keep connections with oAR and nAR simultaneously. Therefore, 
there are maybe some intervals in which the packets from nAR arrive at MN more early than the packets from oAR. 
We call the interval as the interval of packet disorder. 

Number of out-of-sequence packets: the number of packets received from oAR during the interval of packet 
disorder. It is denoted by W. 

Packet disorder will bring unwanted effects[9]. For example, for TCP congestion control, it creates duplicate 
ACKs, and invoke unnecessary packets retransmission. Some papers[10,11] have paid attention to it and tried to 
prevent it. 

2.2   Handoff process for mobile IP 

Handoff in mobile IP is Layer 3 handoff. When MN moves from one oAR domain(also called one subnet) into 
one nAR domain, it will carry out a handoff which contains three stages (see Fig.1): (1) link layer handoff; (2) 
handoff initiation (also called movement detection); (3) binding update and media redirection, etc. 

 

 

ξ η1 η2

O A B D

(1) (2) (3)

Movement direction C

 

Fig.1  Handoff process for mobile IP 

Figure 1 plots the handoff process for Mobile IP. At time O, MN begins to carry out Layer 2 handoff. At time 
A, MN finishes Layer 2 handoff. After this, MN begins to carry out handoff initiation. At time B, MN sends a 
binding update message, and begins to carry out location registration. At time C, the binding update message arrives 
at CN, and after this, packets are redirected to nAR. At time D, MN receives binding update acknowledge message, 
and finishes the whole handoff process. After this, it may receive packets from nAR. By the definition of A, B, C, 
D, we can define ξ, η1 and η2, where ξ denotes the interval from the time when MN begins to carry out Layer 2 
handoff to the time when MN tries to send a binding update message; η1 denotes the one-way delay from MN to 
CN; η2 denotes the one-way delay from CN to MN. Let fξ(x), fη1(y), fη2(z) and fξ,η1,η2(x,y,z) denote the probability 
density function of ξ, η1, η2 and their joint probability density function, respectively, it is obvious that ξ is 
independent of η1, η2. 

3   Model and Analysis of Packet Loss in the Case of Cell Overlap 

Assume that MN moves from oAR to nAR along fairly straight lines, and it always can receive the 
advertisements and packets from oAR and nAR when it resides in the overlap region, see Fig.2. 
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Fig.2  The case of cell overlap 

Figure 2 plots the case of cell overlap. At time O, MN begins to carry out Layer 2 handoff. At time E, MN 
moves out of the overlap region. At time D, MN receives the first packet from nAR. By Section 2.2, we 
have . Let R denote the distance between O and E, which is called the radius of overlap region, V denote 

the movement velocity of MN, and set M1=R/V, then, it denotes the interval from the time when MN begins to carry 
out Layer 2 handoff to the time when MN moves out of the overlap region; let V

1= + +T ξ η η2

CN denote the packets sending 
velocity for CN, VMN denote the packets receiving velocity for MN, and set , γ=V2=M γS CN/VMN, S=ξ+η (In this 
paper, we only analyze the case of ), then, it denotes the interval from the time when MN begins to carry out 

Layer 2 handoff to the time when MN receives all packets resided in oAR if possible. Let time O be the origin point, 
by the definitions of T, M1, M2, we have the following six cases. 

1γ ≥
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Fig.3  The six cases in cell overlap 

Figure 3 reflects that packet loss and packet disorder change as T, M1, M2 change. For example, in the 6th 
case of M2>T>M1, T>M1 means that, in the overlap region, MN couldn’t receive any packet from nAR; M2>M1 
means that, when MN moves out of the overlap region, some packets resided in oAR still aren’t forward to MN. 
They must be lost because there is no buffer and forwarding strategy in the basic Mobile IP[1,2]; M2>T means that, 
when MN receives the first packet from nAR, packet forwarding from oAR to MN still doesn’t end if MN could 
receive all packets resided in oAR. Therefore, MN will not receive any out-of-sequence packets, but the handoff 
causes packet loss. When the overlap region is small and E(ξ) is large, the 6th case will happen. From Fig.3, we 
have: 
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3.1   Packet loss 

 By the expression of N, the distribution of N is 
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In the case of no overlap, we have 1( )N ξ η V= +

where 
1
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3.2   Out-of-Sequence packets 

Similarly, the distribution of W is ( < )P W t = (( 2 ) < , < 2< 1)+ (( 1 ) < , < 1< 2)MN MNP M T V t T M M P M T V t T M M− − . 
Obviously, we may analyze the probability about the number of out-of-sequence packets similarly, here we 

omit it. 
Because ξ is independent of η1, η2, if we further assume that η1 is independent of η2, then ξ, η1, η2 are 

independent. Therefore, 
1 2 1 2, , ( , , )= ( ) ( ) ( )ξ η η ξ η ηf x y z f x f y f z , 

1 1
( )= ( ) * ( )ξ η ξ ηf t f x f y+

 (i.e.
1
( )ξ ηf t+

is the integral convolution 

of ( )ξf x ,
1
( )ηf y ), then it is easy to get , .  ( < )NP t ( <P W t)

One general distribution, which is often used in many applications[7,12], is the Gamma distribution Γ(α,β), 

whose density function is given as follows: 
1

( )= ,  >0, >0
( )

α α
βtβ tf t e α β

Γ α

−
− , where α is the shape parameter, and Γ(α) 

is the Gamma function. In Ref.[13], the one-way delay distribution shows Gamma-like shape.  
In Sections 4, 5, we will give some illustrations based on the following assumptions: 
η1,η2 are independent for each other. 
Γ(α1,β1), Γ(α2,β2), Γ(α3,β3) are the distribution functions of ξ, η1, η2, respectively. 

4   Optimal Radius of Overlap Region 

In this section, we give an example of optimizing the radius of overlap region. 
Let EN, EW denote the mean number of lost packets and out-of-sequence packets respectively, then 

, . We want to find an optimal R such that E= (N NE tdP
−∞

−∞∫ < < )t)t = (WE tdP W
−∞

−∞∫ N and EW are as small as possible. 

For example, by the parameters in Table 1.  

Table 1  The parameters to optimize the radius of overlap region 

1. α1 1. β1 1. α2 1. β2 1. α3 1. β3 1. VCN 1. VMN 1. V 
2. 1 2. 1/20 2. 1 2. 1.2 2. 1 2. 1 2. 1.2 2. 1 2. 1 

1 2( )= ( ) 1+576
23 24N

3E R exp R exp R  − −  
  

, ( )
<0NdE R

dR
 

25 6 36 7 1 9600 1( )= + ( )+
138 5 161 6 23 437 20WE R exp R exp R exp R exp R    − − − − −    

    




576 5 576 1 237+
2185 24 23 24 70

exp R exp R   − − − −   
   

, ( )
>0WdE R

dR
 

It means that EN (R) decreases and EW(R) increases when R increases. Therefore, there exists an optimal R, 
such that EN (R) and EW(R)are as small as possible (See Fig.11). 

5   Numerical Results 

In the following figures, we mark packet loss, packet disorder in the case of cell overlap as loss, disorder, 
respectively, mark packet loss in the case of no overlap as loss1, and mark the corresponding probability in Fig.3 as 
p1, p2, p3, p4, p5, p6, respectively, where , , , 

, , 
1= ( 1> > 2)p P M T M
2> > 1)

2= ( 1> 2> )p P M M T 3= ( 2> 1> )p P M M T
4= ( > 1> 2)p P T M M 5= ( > 2> 1)p P T M M 6= (p P M T M . Similar to Section 3, it is easy to compute them 

(here we omit it). In the following figures, Figs.5, 6, 8, and 9 are plotted by the expressions of ( < )NP t ( < ), P W t in 

Section 3 and the parameters in Table 2; Figs.7 and 10 are plotted by pi(1≤i≤6) and the parameters in Table 2. 

Table 2  The parameters in Figs.5,6,7,8,9,10 

1. β1 1. α2 1. β2 1. α3 1. β3 1.VCN 1.VMN 1.V
2. 2 2. 1 2. 2 2. 1 2. 2 2. 1.2 2. 1 2. 1
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Fig.5               Fig.6 

 
Fig.7              Fig.8 

 
Fig.9        Fig.10 

Figure 5 plots the case of R=0.00002, α1=20, Figure 6 plots the case of R=200, α1=20. Figure 7 plots when R 
change, how pi(1≤i≤6) Changes, where α1=20. Figure 5 shows curve loss and loss1 almost overlap. There are 
almost no out-of-sequence packets. The reason is that the cells have almost no overlap, therefore, the thing in the 
case of cell overlap is similar to the one in the case of no overlap. It is explained in Fig.7, under this condition, the 
6th case in Fig.3 happens at the biggest probability. Figure 6 shows when the radius of overlap region is large 
enough, the probability about number of the lost packets is almost 0; At the same time, packet disorder appears at a 
higher probability. It is explained in Fig.7 that under this condition, the 2nd case in Fig.3 happens at the biggest 
probability. Figures 5 and 6 show the two extreme cases. These illustrations show that the model has conformed to 
our observation perfectly. 

Figure 8 plots the case of α1=2, R=2. Figure 9 plots the case of α1=50, R=2. Figure 10 plots when α1 changes, 
how pi(1≤i≤6) changes, where R=2. Because E(ξ)=β1α1 (where E(ξ) denotes the mean value of ξ), Figures.8 and 9 
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show the probability change as E(ξ) changes, which indicates that the number of the lost packets increases rapidly 
as E(ξ) increases for both cell overlap and no overlap; it is explained in Fig.10 that in the case of cell overlap, when 
E(ξ) is small, the 5th case in Fig.3 happens at the biggest probability. When E(ξ) is large, the 6th case in Fig.3 
happens at the biggest probability. Therefore, Fig.9 shows the number of the lost packets is bigger than the one in 
Fig.8. The explanations also conform to our observation perfectly. In Fig.9, it is also observed that  in the 

case of no overlap is higher than the one in the case of cell overlap.  

( >100)NP

In Fig.11, it is plotted by the expressions of EN (R), EW (R) in Section 4, It shows that EN (R) decreases and EW 
(R) increases as R increases, which indicates that there exists an optimal R. From Fig.11, we know that the case 
R=60 is more rational. 

 
Fig.11 

6   Conclusions 

In this paper, we model and analyze packet loss and packet disorder in the case of cell overlap and no overlap 
for the first time, and get the general expressions about their probabilities, which are the most important and basic 
information to understand handoff performance. In addition, using these results, we can further analyze the size of 
buffers in AR, and optimize the radius of overlap region etc. In the future, we will further study on the performance 
for fast handoff[14]. 
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