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Abstract: Traditional dimension reduction methods about similarity query introduce the smoothness to data series
in some degree, but lead to the disappearance of the important features of time series about non-linearity and fractal.
The matching method based on wavelet transformation measures the similarity by using the distance standard at
some resolution level. But in the case of an unknown fractal dimension of non-stationary time series, the local error
of similarity matching of series increases. The process of querying the similarity of curve figures will be affected to
a certain degree. Stochastic non-stationary time series show the non-linear and fractal characters in the process of
time-space kinetics evolution. The concept of series fractal time-varying dimension is presented. The original
Fractal Brownian Motion model is reconstructed to be a stochastic process with local self-similarity. The
Daubechies wavelet is used to deal with the local self-similarity process. An evaluation formula of the time-varying
Hurst index is established. The algorithm of time-varying index is presented, and a new determinant standard of
series similarity is also introduced. Similarity of the basic curve figures is queried and measured at some resolution
ratio level, in the meantime, the fractal dimension in local similarity is matched. The effectiveness of the method is

validated by means of the simulation example in the end.
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1 Introduction

The similarity query of time series has found important applications in the aspects such as determination of the
similar sales pattern of products and discovery of the similar price behavior of stocks!'l. At present, the similarity
pattern query about time series is a research hotspot in knowledge discovering in the time series databasel®l.
Because there are more sampling points of original time series and more series in the series database, the research
emphasis is how to quicken the process of querying the similarity to solve the problem of realizing the best series
pattern matching.

The common method in the research on similarity query is the dimensionality reduction technique (the
dimension is defined as the number of time and space sampling which distinguishes from the fractal dimension in
this paper). The representative research work includes: the F-Index method based on discrete Fourier
transformation (DFT) to reduce the dimension which is presented by Rakesh”, the Karhuen Loeve(K-L)
transformation method by Wul), the linear division method presented by Keogh Eamonn section by section , in
which the complex curve subsection is represented as the straight line!**l. The probability is used to query similarity
after the series is represented again by the Keogh Eamonn method™>. The up to date research about dimension
reduction is the time series similarity matching based on wavelet transformation presented by Chan and Zheng!®"..
They use Euclidean distance standard and L-shift Euclidean distance standard as the judgement standard of series
similarity respectively. The details are eliminated from the curve in order to distill the basic shape of series curve.
Ordinarily, the time series reflected from an object’s evolution of time-space kinetics is of non-linearity and fractal
character (ragged irregularity of series). There are two kinds of behavior pattern of time series similarity. One kind
displays that similarity may be strictly self-similarity or have statistic features. Almost all time series are stochastic

non-stationary time series in nature!™

, similarity of which means similarity in statistic features; The other kind of
similarities have the difference in hierarchy structure, In nature fractal has a nesting with finite layers. Only the
series objects have fractal similarity features in the non-scaled region. Otherwise similarity or self-similarity will
disappear in the case that the objects go over the non-scaled region. Aforementioned dimension reduction methods
about similarity query such as F-Index method, K-L transformation method and the linear division method all
introduce the smoothness to data series in some degree so that the important features of time series about
non-linearity and fractal are destroyed. Thus the local error of similarity matching of series increases. The latter
matching method based on wavelet transformation measures the similarity by using the distance standard at some

resolution level. But in the case of an unknown the fractal dimension of non-stationary time series, the process of
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querying the similarity of curve figure will be affected. This method is of blindness to a certain degree. In addition,
previous work on similarity of sequence data mainly considers finding global patterns'®'%. In this paper we think
that the similarity of random non-stationary time series data shows the local similarity of series much more and a
time series may be similar to the local shape of other sophisticated series. The similarity of the basic curve figure is
queried and measured at some resolution ratio level, while the fractal dimension in local similarity is matched. The
fractal determinate dimension value educed by scale relation can not depict the space-time kinetics process of object
evolution completely yet, except that it can reflect the self-similarity construction rule of static structure. The
dimension is always set to be constant when the similarity of some nature phenomena is studied. Actually, the
evolution of nature phenomena in one dimension time world may often lead to changeable similarity. The
aforementioned thought of unchangeable dimension does not accord with the objective fact in the case of having
local self-similarity process. We put forward a new concept—time-varying dimension function D(¢) in this paper in
order to describe the phenomena of evolution along with time more sufficiently and completely.

In plane space, the Hurst index H and fractal dimension D of the Fractal Brownian Motion (FBM) model have
the relation: D=2—H, and FBM has a wide use in describing the creation of physiognomy and the stock wave of
capital market!"'). So FBM model is chosen as a breakthrough to study the problem of time-varying Hurst index,
where D(f)=2—H(t). At the same time we note that stochastic process of the FBM model and its correlative
increment process are ordinarily non-stationary because the Hurst index in the stochastic process with local
self-similarity is time-varying. Wavelet analysis has been proven to be a very efficient tool in dealing with
non-stationary and self-similarity. Thus, wavelet transformation will play a leading role in the process of evaluating
time-varying index.

The main work in this paper is organized as follows. Section 2 presents the local self-similarity stochastic
process definition of non-linear time series based on statistic self-similarity. The original FBM model is rebuilt by
introducing time-varying Hurst index to make it to be a stochastic process with local self-similarity. Section 3
utilizes Daubechies wavelet to transform the local self-similarity process and establishes an evaluation expression of
the Hurst index by the least square method. Section 4 introduces the algorithm of gaining the time-varying Hurst
index. Section 5 describes the determinant standards of similarity. In Section 6 the effectiveness of the method is

validated by simulation examples.

2 The Mathematical Model of Non-Stationary Local Self-Similarity Stochastic Process of
Time Series

A statistic self-similarity process may be approximately regarded as a stochastic process that is foreign to
observation distance and keeps the same behavior sample orbit. Data produced from many science domains can be
modeled by this procedure.

The following stochastic process Y(¢) of an integral form can be regard as a generalized fractal Browian motion
(GFBM) of FBM, which includes a time-varying fractal parameter H(z).

Y= [ fo—u)f 0% - Cuy % )+ [ - O a() )

where the real numberz >0, B(t) is the standard Brownian motion. H(t) € (O,l) .

Let Y(7) be a stochastic process with zero mean value. If its covariance 77(s,,s,) satisfies the following

expression

Fz(slasz)_ I (an): _q(t]sl - 32|2H(1){1 + 0(1)}’ (IS1|+|SZ| - 0) @
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where q(t)ZO, then Y(¢) is called a stochastic process with local self-similarity. For a given |sl —sz|, local

self-relativity of the process Y(#) will also wear off when H(¢) decreases from one to zero. Thus a rough sample orbit
with a gradually increased error is appeared.

When a time-varying index is smooth, the covariance function C(sl,sz) in GFBM model (1) satisfies Eq.(2).

So Y(¢) presents a local self-similarity behavior.

3 Wavelet Evaluation of the Hurst Index

Let l//(x) be the mother wavelet. WY(a,t) is the wavelet transformation about the self-similarity process Y(¢)

at scale a and position ¢.Then

WY (a,t) 7yJ.l// “ ’ )du:a%jl//(x)Y(t+ax)dx.

It is educed by Eq.(2) and the above formula that
E(I 2) '1”1// ” ’ ” ’ E[Y ) (v)]dudv = a”l//(x)//(y)E[Y(t + ax)Y(t + ay)]dxdy
~af[y I 0.0)-glfax-ay " ydxdy = Ca™") (@ 0) 3)
where C| = ”|x y| x)l// y)dxdy

Let y, log|WY a z‘]

Y A ]

Then Y, (a) = log[E(IWY(a,z‘]2 )J+ C, +¢, (a) 4)

where C, = E{logl‘WY(a,t]2 /E(IWY(a,t)2 )J}
A regression model can be gained by (1) and (2) when a is very small:

v,(a)= (logC, + C, )+ [2H(r) + 1]log" + £, (a) ®)
A small-scaled series is constructed as follows:

a >a,>..>a;,a;=2",j=12,..n.

Letx; =loga;,y; =y, (aj), j=L12,...,n . The least square method is used to get an evaluator of H(t) in Eq.(5)

(o) {%zir) ] ©

for the couples {(x;,)), j=1,2,...,n}:

whereizzx/, }zzy/
n n
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It can be proved that (t) is a consistent result!'* of A (t)

4 Algorithm Description and Analysis

Now let us observe a stochastic time series process Y’ (t) on the discrete and equally spaced points.

The time points may be limited in [0,1]. The sample size is 27, t=(>i—1)/n, n=12,...,2". yj,k(lFO,l,...,2j71,

j=0,1,...J-1) is an evaluated value of WY(Z”',KZ’/). The latter is the discrete value by wavelet transformation

WY(a,t) ina=2"/,t=K27/. Wavelet transformation is carried on by Daubechies’ compactly-supported wavelet

bases with M moments. Daubechies wavelet function was constructed by an American mathematician called Inrid

Daubechies!").

Step 1. [0,1) is partitioned into 2’ equal-length sub-sections [, without interacting each other.
I, =[(m=-127 m27)1<i<(J-1),m=12,.2".
Step 2. I:I(t) is regarded as the average value of H(t) in the corresponding sub-sections [/, . The

appropriate time spot of ﬁ(t) is chosen at the point 27" (Zm - 1) in the middle of 7,,.

The double variable set is defined as follows:
. 2 . .
((x,.v, )= {|:10g(2’ ),log(|yj’k| ﬂ‘kz/ c ]m} 0<k<2/ -1,0<j<J-1 %

H(t) is evaluated by formula (6) on each 7, .

Step 3. The evaluated value of H (t) is smoothed by using local multinomial to form a curve that can be

regarded as the approach of the real figure of H (t)

Let N =27, M =2". The series is dealt with by wavelet transformation firstly. Reference [7] has proven that
the worst time complexity of the fast wavelet transformation algorithm is 7,,=O(N). The worst time complexity of
Stepl is T;=0(M). The worst time complexity of Step2 is T,=O(M?). The interpolation point number of Lagrange’s
interpolation polynomial of Step3 is M. The time complexity of Step3 is T5=O(M?). So the total time complexity of
the algorithm is T,,+ T+ T+ T5=O(N)+O(M)+O(M?) +O(M*)=O(N+M?).

5 Determinant Standards of Similarity

Definition 1. Given two thresholds ¢;(i=1,2) and two time series X-= {X,- }i:O,l ’’’’’ , and Y= {y, }[:0’1_._”” with
the same length n whose fractal dimension functions are D,(tf) and D,(f) respectively, where
D;(t)e C[a,b],i =1,2. When the following two inequalities are satisfied at the same time the two series X and ¥

are similar.
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4= 0 -x)) < ®)
i=0
d, (D, (1), D, (1) =Max| D, (1)~ D, (0] < &, ©)

where d, (},?) is the Euclidean distance, and d, (D, (¢),D,(¢)) is the measurement of function D, (¢) and D, (¢) .

and Y = {yi } “o1... With

Definition 2. Given two thresholds ¢;(i=1,2) and two time series X= {x‘. }i:O,l _____ ; ;

the same length »n whose fractal dimension functions are D,(f) and D,(f) respectively where
D.(t) e C[a,b],i =1,2. When the following two inequalities are satisfied at the same time, series X and Y are

L-shift similar.

—_ n—1 1
dL,(XsY):(Z((yi_x[)_(yA_xA))z)z <& (10)
i=0
d , (D,(0). D (1)) = Max|(D, (1)~ D,) ~ (D, (1)~ Dy)| < &
= 1 b — 1 b
D, :EL D,(t)dt, D, :EL D, (t)dt (11)

x, and y, are the average values of series X and Y respectively. 51 and 52 are the average values

of D,(¢#)and D,(¢).

Lemma. Given two time series X and Y with the same length n. The two new series S, and 7., are

obtained after X and Y are transformed respectively by wavelet in the layer J , then
d(S,.T) < d(X,Y) (12)

6 Simulation Results

In order to evaluate the effectiveness of the proposed method in searching the similarity of any two stochastic
non-stationary time series, we chose two time series samples from HSI in stock market. The result reported in this
section address the following issues:

e The introduction of time-varying fractal dimension (or time-varying Hurst index) can depict the non-linear
irregularities of stochastic non-stationary time series.

e The new standard of similarities proposed in the above section meets the need of similarity of the basic
shape, while it takes into account the similarity of fractal feature curve of the non-stationary time series data.

e Local similarity between one data series and another one.

Here are the two original non-stationary time series samples in the following figures (Fig.1 and Fig.2), and
they indicate the change of HSI in the two different periods.

Figures 3 and 4 show the two series data curves produced by Fig.1 and Fig.2 after Daubechies discrete wavelet
transformation. Here we adopt the wavelet base db4, and the two original data series are decomposed and
synthesized at the fourth layer respectively. Obviously the series in Fig.3 is similar to the sub-series of series in
Fig.3 when ¢, =0.04.
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Figures 5 and 6 represent the Hurst index curves from Figs.1 and 2 respectively. Evolution of time-varying
Hurst index is of great importance in stock investment strategies. Fifty points are selected in Fig.1 and treated with
wavelet base db4, J=8. Hurst index discrete values are calculated by Eq.(6) and smoothed by a polynomial with
order eight. So does Fig.2. Figure 7 is a segment cut from Fig.5. Hurst index curve in Fig.7 is similar to that in Fig.6

when ¢, =0.02, that is, the fractal character of the data from Fig.2 approaches to that from the local sub-series of

Fig.1.
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Fig.3 Synthesized curve of db4 coefficients from Fig.1 Fig.4 Synthesized curve of db4 coefficients from Fig.2
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7 Conclusions

We have proposed a new standard of series similarity, by which the similarities of dynamic characters of data
from two time series can be completely depicted.

The similarity of the basic curve figures is queried and measured at some resolution ratio level, while the
fractal dimension in local similarity is matched. Daubechies wavelet is an important tool in data processing. This
paper puts emphasis on algorithm and match of the fractal time-varying Hurst index curves. The effectiveness of the
method is validated by means of the simulation example in the end. The work of this paper is the supplement and
development of the study of similarity mentioned in the Refs.[6,7].

The above two kinds of similarity matching can be combined to depict the similarities of dynamic characters of

data from two time series.
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