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Abstract: Training a SVR (support vector regression) requires the solution of a very large QP (quadratic 
programming) optimization problem. Despite the fact that this type of problem is well understood, the existing 
training algorithms are very complex and slow. In order to solve these problems, this paper firstly introduces a new 
way to make SVR have the similar mathematic form as that of a support vector machine. Then a versatile iterative 
method, successive overrelaxation, is proposed. Experimental results show that this new method converges 
considerably faster than other methods that require the presence of a substantial amount of data in memory. The 
results give guidelines for the application of this method to large domains. 
Key words: support vector regression; support vector machine; successive overrelaxation; quadratic programming; 

chunking algorithm 

摘  要: 支持向量回归(support vector regression,简称 SVR)训练算法需要解决在大规模样本条件下的凸二次规划

(quadratic programming,简称 QP)问题.尽管此种优化算法的机理已经有了较为明确的认识,但已有的支持向量回归

训练算法仍较为复杂且收敛速度较慢.为解决这些问题.首先采用扩展方法使 SVR 与支撑向量机分类(SVC)具有相

似的数学形式,并在此基础上针对大规模样本回归问题提出一种用于 SVR 的简化 SOR(successive overrelaxation)算
法.实验表明,这种新的回归训练方法在数据量较大时,相对其他训练方法有较快的收敛速度,特别适于在大规模样
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本条件下的回归训练算法设计. 
关键词: 支持向量回归;支持向量机;SOR 算法;凸二次规划;chunking 算法 
中图法分类号: TP18  文献标识码: A  

In the last few years, there has been a surge of interest in SVMs (support vector machines)[1]. SVMs have 
empirically been shown to give a good generalization performance on a wide variety of problems. However, the use 
of SVMs is still limited to a small group of researchers. One possible reason is that training algorithms for SVMs 
are slow, especially for large problems. Another explanation is that SVM training algorithms are complex, subtle, 
and sometimes difficult to implement. 

In 1997, a theorem[2] that introduces a whole new family of SVM training procedures was proved. In a 
nutshell, Osuna’s theorem showes that the global SVM training problem can be broken down into a sequence of 
smaller sub-problems and that optimizing each sub-problem minimizes the original QP problem. Even more 
recently, the sequential minimal optimization algorithm (SMO) was introduced[3] as an extreme example of Osuna’s 
theorem in practice. Because SMO uses a sub-problem of size two, each sub-problem has an analytical solution. 
Thus, for the first time, SVMs could be optimized without a QP solver. 

In addition to SMO, other new methods[4,5] have been proposed for optimizing SVMs online without a QP 
solver. While these other online methods hold a great promise, SMO is the only online SVM optimizer that 
explicitly exploits the quadratic form of the objective function and simultaneously uses the analytical solution of the 
size two cases. 

While SMO has been shown to be effective on sparse data sets and especially fast for linear SVMs, the 
algorithm can be extremely slow on non-sparse data sets and on problems that have many support vectors. 
Regression problems are especially prone to these issues because the inputs are usually non-sparse real numbers (as 
opposed to binary inputs) with solutions that have many support vectors. Because of these constraints, Shevade[6] 
and Chih-Jen[7] generalized SMO so that it can handle regression problems. However, one problem with SMO is that 
its rate of convergence slows down dramatically when data are non-sparse and when there are many support vectors 
in the solution ― as is often the case in regression ― because kernel function evaluations tend to dominate the 
runtime in this case. Moreover, caching kernel function outputs can easily degrade SMO’s performance even more 
because SMO tends to access kernel function outputs in an unstructured manner. 

Mangasarian[8] proposed a new training algorithm based on SOR (successive overrelaxation). Because SOR 
handles one point at a time, similar to Platt’s SMO algorithm which handles two constraints at a time and Joachims’ 
SVM which handles a small number of points at a time, SOR can process very large datasets that need not reside in 
memory. The algorithm converges linearly to a solution. 

In this work, we propose a new way to make SVR (support vector regression) have the similar mathematic 
form as that of a support vector classification, and derive a generalization of SOR to handle regression problems. 
Simulation results indicate that the modification to SOR for regression problems yields dramatic runtime 
improvements. 

1   Successive Overrelaxation for Support Vector Machine 

Given a training set of instance-label pairs (xi,yi), i=1,…,l, where xi∈Rn and y∈{1,−1}l, Mangasarian outlines 
the key modifications from standard SVM to RSVM[8]. He starts from adding an additional term b2/2 to the 
objective function: 
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The training is expressed as a minimization of a dual quadratic form: 
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Define EHA += , ALDL T =++ . The nonzero elements of llRL ×∈  constitute the strictly lower triangular part 
of the symmetric matrix A , and the nonzero elements of llRD∈ ×  constitute the diagonal of A . The SOR method, 
which is a matrix splitting method that converges linearly to a point a satisfying (2), leads to the following 
algorithm: 

Choose ( 2,0∈ )ω . Start with any . Have  to compute  as follows: lRa ∈0 ia 1+ia

 ( )( )( )∗+−+ −+−−= iiiii aaLeAaDaa 111 ω  (3) 
where  denotes the 2-norm projection on the feasible region of (2), that is ( )∗⋅
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2   Simplified SVR and Its SOR Algorithm 

Most of those already existing training methods are originally designed to only be applicable to SVM. 
Compared with SVM, SVR has a more complicated form. For SVR, there are two sets of slack variables ( )lξξ ,...,1  

and  and their corresponding dual variables ( ∗∗
lξξ ,...,1 ) ( )laa ,...,1  and ( )∗∗

laa ,...,1 . The analytical solution to the 
size two QP problems must be generalized in order to work on regression problems. Even though Smola has 
generalized the SMO to handle regression problems, one has to distinguish four different cases: ( )ji aa , , ( )∗ji aa , , 

, and . This makes the training algorithm more complicated and difficult to be implemented. In this 
paper, we propose a new way to make SVR have the similar mathematic form as that of a support vector 
classification, and derive a generalization of SOR to handle regression problems. 

( ia ,∗ )ja a( ∗∗
ji a, )

2.1   Simplified SVR formulation 

Similar to (1), we also introduce an additional term b2/2 to SVR. Hence we arrive at the formulation stated as 
follows: 
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By introducing two dual sets of variables, we construct a Lagrange function from both the objective function 
and the corresponding constraints. It can be shown that this function has a saddle point with respect to the primal 
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and dual variables at the optimal solution: 
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It is understood that the dual variables in (5) have to satisfy positive constraints, i.e. . It 
follows from the saddle point condition that the partial derivatives of 

0,,, ≥∗∗
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Substituting (6) into (5) yields the dual optimization problem: 
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The main reason for introducing our variant (4) of the SVR is that its dual (7) does not contain an equality 
constraint, as does the dual optimization problem of the original SVR. This enables us to apply in a straightforward 
manner the effective matrix splitting methods such as those of Ref.[8] that process one constraint of (4) at a time 
through its dual variable, without the complication of having to enforce an equality constraint at each step on the 
dual variable a. This permits us to process massive data without bringing them all into a fast memory. 
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Thus (7) can be expressed in a simpler way. 
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If we ignore the difference of matrix dimension, (8) and (2) have the same mathematic form. Compared with 
(7), (8) has a simpler mathematic form. However, the only difference between formulations (7) and (8) is the 
mathematic representation. If we expand (7) and (8) to polynomials with respect to a, their mathematical 
formulations will be identical. So their optimization problems are essentially the same. Through this important 
transformation, SVR and SVM can be written in the same mathematic form. According to the statistical learning 
theory, we can solve the optimization problem for SVR in the same way as SVM. Thus many training algorithms 
that are used in SVM can be used in SVR directly. 

  



 204 Journal of Software  软件学报  2004,15(2)    

2.2   SOR algorithm for SVR 

Here we let EHA += , ALDL T =++ . The nonzero elements of llRL 22 ×∈  constitute the strictly lower 
triangular part of the symmetric matrix A , and the nonzero elements of llRD 22 ×∈  constitute the diagonal of A . 
The SOR method, which is a matrix splitting method that converges linearly to a point  satisfying (8), leads to 
the following algorithm: 

a

SOR Algorithm. Choose ( )2,0∈ω . Start with any a0∈R2l. Have ai to compute ai+1 as follows: 

 ( )( )( )∗+−+ −+−−= iiiii aaLeAaDaa 111 ω  (9) 

until ii aa −+1  is less than some prescribed tolerance. 

The components of  are computed in order of increasing component index. Thus the SOR iteration (9) 
consists of computing  using 
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immediately after it is computed, thereby achieving improvement over other iterative methods such as gradient 
methods where all component of  are updated at once. 

i
ja 1,..., −

a

ia1

Even though our SOR iteration (9) is written in terms of the full ll 22 ×  matrix A , it can easily be 
implemented one row at a time without bringing all of the data into memory as follows for : lj 2,...,1=
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A simple interpretation of this step is that one component of the multiplier aj is updated at a time by bringing 
one constraint of (8) at a time. 

3   Experimental Results 

The SOR algorithm is tested against the standard chunking algorithm and against the SMO method on a series 
of benchmarks. The SOR, SMO and chunking are all written in C++, using Microsoft's Visual C++ 6.0 complier. 
Joachims’ package SVMlight (version 2.01) with a default working set size of 10 is used to test the decomposition 
method. The CPU time of all algorithms are measured on an unloaded 633 MHz Celeron II processor running 
Windows 2000 professional. 

The chunking algorithm uses the projected conjugate gradient algorithm as its QP solver, as suggested by 
Burges[1]. All algorithms use sparse dot product code and kernel caching. Both SMO and chunking share the folded 
linear SVM code. 

Experiment 1. In the first experiment, we consider the approximation of the sinc function ( ) xxxf ππsin)( = . 

Here we use the kernel ( ) ( )δ2
2121 exp, xxxxK −−= , 100=C , 1.0=δ  and 1.0=ε . Figure 1 shows the 

approximated results of SMO method and SOR method respectively. 

In Fig.1(b) we can also observe the action of Lagrange multipliers, acting as forces  pulling and 

pushing the regression inside the 

( ∗
ii aa , )

ε -tube. These forces, however, can only be applied at the samples where the 
regression touches or even exceeds the predetermined tube. This directly accords with the illustration of the 
KKT-conditions: either the regression lies inside the tube (hence the conditions are satisfied with a margin), and 
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Experiment 
SOR 
SMO 

Chunking 
SVMlight 

Lagrange multipliers are 0, or the condition is exactly met and forces have to apply 0≠ia  or  to keep the 

constraints satisfied. This observation indicates that SOR method can handle regression problems successfully. 

0≠∗
ia

 

Fig.1  Approximation results of SMO method (a) and SOR method (b) 
 
In Table 1 we can see that the SVMs trained with various methods have nearly the same approximation 

accuracy. When handling 

Experiment 2. In ord
we test these algorithms o

In this experiment, w
Abalone dataset from the 
(350 training, 156 testing
the data were rescaled 

Data set 

 

Boston 
housing 

Abalone 

USPS 

 

Table 1  Approximation effect of SVMs using various methods 

Time (s) Number of SVs Expectation of error Variance of error 
0.432 ± 0.023 9 ± 1.26 0.0014 ± 0.0009 0.0053 0.0012 
0.467 ± 0.049 9 ± 0.4 0.0016 ± 0.0007 0.0048 0.0021 
0.521 ± 0.031 9 ± 0 0.0027 ± 0.0013 0.0052 0.0019 

±
±
±

a small size of data sets, there is no great difference in time consumption. 
0.497 ± 0.056 9 ± 0 0.0021 ± 0.0011 0.0067 0.0023 ±

er to compare the time consumption of the different training methods on massive data sets, 
n three real-world data sets. 
e adopt the same data sets used in Ref.[9]. That is, we choose the Boston Housing and the 

UCI Repository and the USPS database of handwritten digits. The first data is of size 506 
), the Abalone dataset of size 4177 (3000 training and 1177 testing). In the first two cases 
to zero mea remained 

Time (

SOR
SMO

Chunk
SVMli

0.15 ± 0
0.23 ± 0
2.74 ± 1
3.42 ± 0
8.72 ± 2

12.63 ±
87.44 ± 1
88.37 ± 1
97.41 ± 2
183.2 ± 1
1563.1 ±
1866.5 ±
±
±
±
±
±
±
±
±

n and unit variance, coordinate-wise, while the USPS dataset 

Table 2  Comparison on various data sets 

s) Trainingset 
size 

Number of 
SVs 

Training 
error 

Testing 
error 

 
 

ing 
ght 

SOR 
SMO 

Chunking 
SVMlight 

SOR 
SMO 

Chunking 
SVMlight 

SOR 
SMO 

Chunking 
SVMlight 

SOR 
SMO 

Chunking 
SVMlight 

.07 

.11 

.06 

.08 

350 

168 ± 13 
163 ± 15 
167 ± 6 

168 ± 10 

25.0 

23.4 1.34 
25.7 0.94 
24.3 1.08 
23.6 1.12 

.31 
3.98 
2.01 
5.24 

3000 

1308 ± 24 
1316 ± 7 

1317 ± 15 
1317 ± 11 

2.5 

2.46 0.65 
2.23 0.81 
2.37 0.96 
2.65 0.72 

8.07 
6.85 

11534 ± 6 
11532 ± 8 

28.6 1.43 ±
33.4 1.25 ±
54.6 
46.7 

29463 
11533 ± 5 
11534 ± 5 

30.0 
31.8 1.16 ±
29.4 1.53 ±
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unchanged. Its data size is 40337 (29463 training and 10874 testing). Finally, the gender encoding in Abalone 
(male/female/infant) was mapped into  ( ) ( ) ( ){ }1,0,0,0,1,0,0,0,1 .

We adopt the same kernel function as Experiment 1. For the first dataset, Boston Housing dataset, the 
parameters are , 1000=C 5.1=δ  and 30=ε . For the second dataset, Abalone dataset, the parameters are 

, 1000=C 5=δ  and 5.3=ε . While for USPS dataset, these parameters are 1000=C , 18=δ  and 30=ε . 
Table 2 illustrates the time consumption, training set size and number of support vectors for different training 

algorithms. Here we can see that as the size of data set increases, the difference of training time among these 
training algorithms also increases greatly. When the size of data set reaches 29463, the training time needed by 
Chunking and SVMlight is more than 16 times than that of SOR. 

Experiment 3. In this experiment, we will use the SVM trained by SOR to predict the time series data set. Here 
we adopt Greenwich’s sunspot data. We can gain these data from Greenwich’s homepage 
http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm. We use historic sunspot data to predict future sunspot data. 
Figure 2 shows the comparison between the real sunspot data and the predicted sunspot data. This illustrates that the 
SVM gives a good prediction to sunspot. This experiment shows that the SVM trained by SOR algorithm can be 
used in practical problems successfully. 

 
Fig.2  Comparison between real sunspot data (real line) and predicted sunspot data (dashed line) 
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