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Abstract: J. Dj. Goli¢ applied linear sequential circuit approximation (LSCA) method to analyze the summation
generator with an arbitrary number of inputs. He conjectured that he could obtain all pairs of mutually correlated
input and output linear functions with the maximum possible absolute value of the correlation coefficient by this
method, but he did not give any proof. By using Walsh Transformation technique, the conjecture is proved for even
n in this paper. The “total correlation” of summation generator is studied which is very similar to that of combiners
with one bit memory.
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In stream cipher designing, nonlinear Boolean functions are often used as combiners, and the inputs of the
combiners are usually linear feedback shift registers (LFSRs). It is the general structure of memoryless stream
ciphers. A combiner of such structure must be of some correlation immunity ordert!; otherwise the combiner will be

vulnerable to divide-and-conquer correlation attacks!™ 3

. For a memoryless combiner, Meier and Staffelbach
showed that the sum of the squares of the correlation coefficients between the output bit and all of the linear

functions of the input is always 1
=, Q)

Choosing combiners to be of some correlation immunity order means that certain of these ¢,’s vanish. However, by
(1) this causes some other correlation coefficients to increase according to which cryptanalyst may apply fast
correlation attacks!*?!. So there is a tradeoff'!! between the nonlinear complexity and the correlation immunity order.
The use of combiner with memory is suggested in Ref.[6] to avoid this tradeoff. It is shown that with just one bit of
memory, one can achieve the maximum-order correlation immunity regardless of the linear complexity. R. A.
Rueppel™ proposed the summation generator as an example of such combiners with memory.

The correlation properties of combiners with one bit memory (including summation generator with two inputs)
have been studied in Ref.[7]. For any n, the corresponding asymptotic correlation coefficients of summation
generator with » inputs who has M Z(logz n—| bit memory are determined in Ref.[8]. Goli¢!! applied linear
sequential circuit approximation (LSCA) method to the summation generator with arbitrary number of inputs and
obtains all pairs of mutually correlated input and output linear functions with the maximum possible absolute value
of the correlation coefficient. But he didn’t confirm if such linear functions had the maximum absolute value of
correlation coefficient to the current output bit. His conjecture was only demonstrated by two examples when n=3
and n=5. We will give a strict proof for even n in this paper. What’s more, we will get a result about the “total
correlation” of summation generator, which is very similar to the one about combiner with one bit memory.

Attacks on summation generator are given in Refs.[9~11].

Section 1 is a summing-up of the preceding work on summation generator®®!. In Section 2, we give a proof of
Goli¢’s conjecture for even n and investigate the “total correlation” of summation generator. Conclusions and

open questions are given in Section 4.

1 The Summation Generator

The summation generator is a binary nonlinear combiner with memory whose internal state variable, the carry,
takes integer values from the set [O,n—l], where n is the number of inputs. The memory size in bits is thus

M =ﬁog2 n—| Let X, = (x,,,%,,) and y, denote the n input bits and the output bit at time ¢

respectively, and let S, denote the carry at time . For simplicity, we keep the same notation for the carry
St=2::;sj1,2j and for the binary representation of the carry §,=(sg,,...,5),,). We also use the notation
Sff)Zsi,, , 0<j<M -1, S being the least significant bit of S,. Then, for ¢> 0, the output and the next-state
function of the summation generator are defined by

yf:fO(thSt)zl‘(-:Dlxi,t@Sf(O)’ (2)

Zn:xu +S,]

S =H(X,,8)= [H 2 p (€))

with the modulo 2 summation in (2) and integer summation in (3).
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In correlation analysis, the input {x,.’, }ZU , 1<i<n, which are produced by LFSRs with distinct primitive

feedback polynomials, are assumed to be mutually independent, uniformly distributed and independent sequences of
binary variables. However, the next-state function (3) is not balanced, that is to say, the carry S, is not uniformly
distributed among the set [O,n—l], if its input is balanced. It is shown in Ref.[12] that the next-state function

defines an ergodic Markov chain whose stationary (asymptotic) probability distribution is given by (see Ref.[1])

: 1
q(s>=i,2(—1)’(s—z)"["+ j @
n!'= /

Here g(s) denotes the asymptotic probability that S, is equal to s—1, 1<s<n. Because S, becomes
arbitrarily close to the stationary probability for increasing j , we can assume that P(S, =s—1)=¢g(s).

The correlation coefficient between any two binary random variables a and b is defined as
c(a,b)=P(a=b)—P(a#b), and the correlation coefficient of a single binary variable a is defined as

c(a)=c(a,0) . For even S§,, y, = (-an

it

, and for odd §,, y, # (—_lei’,. So p, = P(y,:(-_lei’,) =

gD +q3)+q(5)+..., and P(y, # (—fDlxi’t) =q(2)+q(4)+q(6)+.... Then the (asymptotic) correlation coefficient of
the least significant bit S® is given as
¢, (V)= py—p =D (D" q(s). )
s=1

Theorem 1."¥ For the asymptotic probability in (4),
g(n+1-s)=4(s). (6)

When the number of the inputs is even, ¢, (S©)=0. When 7 is odd, we get

S if k=0 (mod4),

¢ (S =207 > (D g2l +1) if k=1(mod4), o
' =D g2 if k=2 (mod4),
=2 (=D'q(2l+1) if k=3 (mod4).

and ¢, (@) <272 In particular, lim c, S =0.
n—0

Theorem 2.1 Denote the stationary coefficient between S and @-X,, by ¢, (S”,@-X), @eF,. For

odd n, ¢,(S”,x,) =0,and foreven n, n=2k,

=SSN gIAD+ Y (DM g2D) if k=0 (mod4),
ey g+ )+ ()M gl if k=1(mod4),

P z’;j( ) a( +)+Zi:1( )"q2) if k=1(mod4) ©
Yo Dg@I+D = (D™ (2D if k=2 (mod4),

k-1 k 4 .
- DI+ =Y (-1 q2D) if k=3(mod4).
where 1<i<n. What’ more, for even 1, let W, (@) be the Hamming weight of @ . Then ¢, (S, @-X) is

equal to ¢, (S,x,) if W, (@) =1(mod4), to —c,(SV,x,) if W, (@) =3(mod4), and to zero if W, (@) is
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even.
Let c(n) bedefineas c,(S”) if »n isoddandas c,(y,x,) if n iseven. Then we let cmax(n)=|c(n)|.

Theorem 3.”) For any time ¢ >1, assume that the current and the preceding inputs to the summation generator
are mutually independent and uniformly distribute and that the preceding carry has the asymptotic probability
distribution (4).

If the number n of binary inputs is odd, then the correlation coefficient between the current output bit and the
binary sum of the current input bits and any number m, 0<m <n, of the preceding input bits is equal to c(n) if
m=0(mod4),to —c(n) if m=2(mod4), and to zero if m is odd.

If the number » of binary inputs is even, then the correlation coefficient between the current output bit and
the binary sum of the current input bits and any number m , 0<m <n, of the preceding input bits is equal to

c(n) if m=1(mod4),to —c(n) if m=3(mod4), and to zero if m iseven.
2 Correlation Analysis of Summation Generator

In fact, the output function is a Boolean function with n+1 variables. S” can be regarded as a Boolean

function of X, and S,
n (0)
(0)
[z Xipa T S J
i= 1
S0 =\ ) ®s!. 9)
We denote the correlation coefficients between the output function and the linear functions by ¢, (@) =c(f,,@ - X)
and ¢, (@) =c(f,,@-X +S) . In this section we only concentrate on the condition of even n.When n is even,

the stationary probability distribution of S is balanced. Thus we get
co(@) = S(,O)(w,O) > C1(ZU):S(/0)(ZUJ) > (10)
where S, is the Walsh transform of f,
1

Sip@ = 2EDMVE)TT (@ e B (11)
2 L
We denote
CO2 B Zco(w)z > C12 = ZCI(ZU)Z 5 (12)
el weFy'

Then by Parseval’s theorem,
Ce+Cl=1. (13)
It is easy to know that C(f =0 and Cl2 =c,(L1,....)=1.
We also denote the correlation coefficients between the next-state function and the linear functions by
dy@)=c(fi,@-X) and d(@)=c(f,,@-X+S5”). Then d,(@) is determined by Theorem 2. Now we
investigate all correlation coefficient between the current output bit y, the linear functions with the form

I= iwkxk . (14)

k=t—i
Lemma 1. Suppose that (Q,F,P) is a probability space, and Y =(y,,...,»,) is a random vector of n
dimension in (Q,F,P), then for any a=(qa,,...,a,) € F, , we have
1
2n71

211—1 -1
2n71

z P(@Y =@a)—

weF,) ,@#0

P(y,=a,..,y,=a,)=

In particular, for n =2, we have

© hEE

AT hupy/ www. jos. org. cn




BRE SR AR A R B A AR K AT 1467

1 1
P(y, =ay,y, :az)ZE(P(JG =a)+P(y,=a,)+ Py +y,=q +a2))—5.

t
Theorem 4. The correlation coefficient between y, and /= Zkak is
k=t—i

O X X)) =@y (@, 1)ty @, 1)) (@) (18)

k=t—i
Proof. For i=0 and every weF,), s=o,-X,, c(y,,@,-X,) is equal to zero for S is balanced and
independent to X, .
For i=1, s=a,-X,+@,_,-X,_,, we have
cy,o, X, +w,,-X,_) = 2Py, =o,- X, +@,_,-X,_)-1. (15)
P(y,=w, - X,+@,_-X,)=P(f,(X,.S")=w,-X,+@,_, - X))
=P(f,(X,0)=w, - X,+@,,-X, .S =00+ P(fy(X,.D=a, X, +@,_ - X, ;.5 =1)

1
:E[P(fO(X[,O) =w, 'Xr +wt—1)+P(Sz(0) = 0)+ P(fo(XwO):mt 'Xt +@,, 'Xx—l +Sr(0))_l]+
1
P D =a, X, +a,,)+ PS” =D+ P(fy(X,D=a,-X,+@,,- X, +5 +1)-1]
S PUNX0) =@, X, 0, X+ S S P (XD =, X, X, + S 4D

[P(fy(X,.0) =@, X,,@,_ - X, +5 =0)+ P(f,(X,0)=a, - X, +Lo,_ -X_ +5 =D]+

N|'—‘l\)

E[P(fO(X, D=a, X, o, - X, +SO =D+ P(f,(X,.D)=a, X, +Lo,_ X, +5 =0)]
= %[P( (X, 0 =@, -X)P@,  -X,_,+S? =0+ P(f,(X,,0)=a, - X, +)P(@,_, - X, , +S” =D)]+
%[P( X, V=a, -X)P@, X, +SO =)+ P(f,(X,)=a,-X, +DP(@, - X, , +5© =0)]
=%{P(wH X, +80 =0[P(f,(X,.0)=a,- X,)-P(f, (X, ) =a,- X )]+ P(f,(X,,.)=a, - X,)} +
%{P(m,,l X, +80 =0[P(f, (X, )=a, - X, +1)=-P(f,(X,,0) =@, - X, + D]+ P(f,(X,,0) =@, - X, +1)}

=%[P(fo(X,,1):wt X))+ P(fy(X,,0)=a,-X, +]) +

P@, - X, +5" =0)(P(fy(X,,0)=a,-X,)-P(fo(X,)=a,-X,) +
P(fo(X, )=o,- X, +1) - P(f,(X,,0)=a, - X, +1))]

=%[1—<P(fU<X,,0):w, X)=P(fy(X, D=z X,)+
2P@, X, +S =0)P(f,(X,0)=a, -X )-P(f(X,.) =@, X,))]

[1+(P(f0(Xr’0):wr 'Xt)_P(fO(Xtal):wt 'Xr))(zp(wt—l‘xt—l +S(0) 70) 1)]

[1+ (P(fo(Xf,O) @, X )=P(fo(X,0)#@, X))+

Il
N|>—= N | —

P(fo(X, DV 2@, X )-P(f,(X,D)=@,-X )] QP@, X, ,+5° =0)-1)

Il
I\)I»—

N | =

[1+ 2:“ Z(_l)fo()(,O)ﬂvl.X) + 23“ z(_l) fU(X,l)+m,-X+l)]d0 (@)

XeF) XeF)
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e Y )N (@, )

n+l
2

[1+

[+c(@)ldy(@,,) -

By (15), we get
cy,m, X, +o,_-X,_)=c(@)d,(7,). (16)
For i=2,if we use the same method and similar procedure, we will get
o, X +a, - X +o,,-X,)=c@)d(@,_)d(@,,) . (17)

By induction, in step i we get
13
c(y,, zkak) =c¢(@)d\(@_)..d(@,_)do(@_;), (18)
k=t—i
which completes the proof of the theorem. U
Theorem 1 gives the correlation coefficient between all the linear functions of the inputs. So we can get the
following corollaries
Corollary 1. For even n, Theorem 3 gives all the linear functions with maximum correlation coefficients to

the current output bit.
Proof. 1t is because of the fact that, for i>2 and Ve e F,, |d1 (@, )| <1. O

Corollary 2. For even n, the correlation coefficients between the output bit at time ¢ and all the linear

functions with form (14) satisfy

t 1_ D2i
Ci= Z Cz(ywzkak):Dg 12 (19)
(@ylt—i<k<to <Fy'} k=i 1-D;
t
Proof. For j=0l..i,let L,={) &, X, |w,_, #0,@,_;,,=..=w,_,; =0}. Then
k=i
-1
2D = Y a@)dy(@,. )’ []d(@,)* =CIDiDiV ",
leL; {@y|t-j<kst,@;,_;#0} ket—ji+l
2 2 e 2 — p2 LoD
C’=Ci Q. _ KRDB "= p] —. 0
=1 1-D;

This conclusion about the total correlation is very similar to that of combiners with one memory bit"l.
3 Conclusion

We demonstrate that Theorem 1 gives all the functions with maximum correlation coefficient for even n. We
also study the “total correlation” of summation generator. However, there are still many problems that haven’t been
solved. For even n , the values of d,(@)’s haven’t been determined. If the values were given, we can compute the

correlation coefficients between the current output bit and all the linear functions of the inputs. Goli¢’s conjecture is
not proved for odd n where the least significant bit of the carry S” is not balanced. By correlation analysis, we

can see that summation generator is not very strong. So good generator with memory should be found. Some new

design criterions of combiners with memory were pointed out in Ref.[12], but there are still many important
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problems having not been solved. Because combiners with memory have many advantages over memoryless ones,

the work in this area is very significant.
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