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Abstract: Today, data are stored in and managed by a DBMS(database management system). Relational 
database is the current database technique to solve the problem in the flat-file and hierarchical database model. In 
the application of GIS(geographical information system), it recurs to a mechanism i.e. so-called Spatial Database 
for arranging, analyzing and viewing spatial data. Because spatial database contains many different data formats and 
structures, these complex data lead to that spatial data manipulation and process may be very complex and difficult 
and tend to make mistakes. In this paper, we advise a new method by using relational database to manipulate spatial 
data. The scheme is to introduce the concept of RSDD (i.e., Regularly Spatial Discrete Domains), then define 
concepts about RPO (i.e., RSDD_based Primary Object) and RO (i.e., RSDD_based Object). The concept of RSDD 
can solve the conflict between the infinite precision real numbers of spatial object and the finite precision number 
systems of computers. 
Key words: relational database; spatial database; RSDD; GIS 

Geographical information systems (GISs) support applications that manipulate geographical data (or spatial 
data), such as urban planning, traffic control or natural resources management. Among the main issues in GIS 
design are the management of large amounts of data and the coexistence of two kinds of data: alphanumerical data 
and spatial data (geometry and topology). In addition, spatial data typically has extremely complex and variable 
structure, and it must be manipulated by specific operations. 

GIS is primarily associated with spatial data, and therefore a large amount of the research effort in databases 
for GIS is related to spatial structures and access methods[1~4]. But, there is no consensuses on which are the 
appropriate methods to implement them into a DBMS. Today, data are stored in and managed via a Database 
Management System (DBMS)[5,6]. Relational database[7] is the current database technique to solve the problem in 
the flat-file and hierarchical database model. Relational DBMS (RDBMS) probably has the simplest structure a 
database can have. Data is organized in tables and tables contain records that consist of fields. GIS recurs to a 
mechanism, i.e., so-called Spatial Database, for aiming at storing, retrieving, manipulating, querying, and analyzing 
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spatial data. Spatial data are any data whose the underlying frame of reference is the Earth’s surface, such as point, 
line, surface, and solid. 

In the spatial database, a fundamental idea is how to represent geometry. But spatial database contains many 
different data formats and structures. These complex data lead to the fragmental data structures and loose 
relationships among themselves. Spatial data manipulation and process may be very complex and difficult and tend 
to make mistakes. 

We attempt to manipulate the RSDD-based data types which we defined using relational database. This method 
can employ the mature technology of relational database to solve the complex problem of spatial database. This 
paper is organized as follows. In section 1, we briefly explain major concepts about GIS data structures. We 
introduce the RSDD-based spatial data type in section 2. Section 3 expresses the idea of using relational database to 
manipulate spatial data. Finally, we present our conclusions in section 4. 

1   Spatial Data Type and Structure 

The design of spatial data types and structures should be based on an understanding of the properties of spatial 
data in order to accommodate the design process as close as possible to the nature of spatial phenomena in the 
physical world. Most data manipulated by GIS are spatial data. Spatial data[8] consist of spatial objects made up of 
points, lines, surfaces, solids, and even data of higher dimension which include time. Examples of spatial data 
include cities, rivers, roads, counties, states, crop coverage, mountain ranges, etc. Often it is also desirable to attach 
non-spatial attribute information[9]. Examples of spatial properties include the extent of a given river, or the 
boundary of a given county, elevation heights, city names, etc. Spatial databases facilitate the storage and efficient 
processing of spatial and non-spatial information ideally without favoring one over the other. Such databases are 
found increasingly usage in environmental monitoring, space, urban planning, resource management, and etc. 

Spatial data has two models[8]: raster model and vector model. 
The raster data model divides our terrain into cells of equal and regular size and shape. Then, the value of any 

cell for a particular attribute is the value of the attribute in that cell. This division of the terrain into regular cells is 
called “regular tessellation”. The cells can be of any shape as long as all of them are of the same shape. Thus, we 
could have a grid of triangular, hexagonal, or square cells. For our particular example, suppose we are assigned to 
store data concerning the elevation and temperature at different part of a given terrain or geographical region, which 
shape we choose would depend on how the attributes, i.e. elevation and temperature, vary over the terrain. If for 
some reason we know that temperature seems to be more or less constant over a hexagonal region, we could choose 
a hexagonal shape as our cell shape. 

In our example, we have more than one attribute about which we want information. One good way to visualize 
this model would be to think of a (considerably transparent) quilt laid over our terrain. The quilt is composed of 
equal and regular cells. This particular quilt may represent information of elevation, so each cell in this quilt is 
labeled with the value of elevation in that cell. For temperature, we have yet another quilt, or “layer”. This quilt is 
divided into cells exactly like the first quilt. The only difference between these two quilts is the attribute whose 
value is stored in each cell. In other words, we have different layers representing different attributes, and each layer 
is stored in a different file. Each cell in each quilt can only be assigned one value at a time. This rule makes sense if 
we realize how one cell cannot have two different elevations. 

Each cell is called a “pixel” (picture element). The area of each cell or pixel is called its “spatial resolution”. 
The spatial resolution tells us about the accuracy for this particular choice for cell size. In other words, if we have 
smaller cells, we would probably have more accuracy because we would be able to better capture or approximate 
the difference between attribute values over our terrain. A minimum mapping unit is “the smallest element we can 
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uniquely represent in our data” [3,4,10]. 
The vector model, like the raster model, divides space into discrete elements, but unlike the raster model, it 

performs this division based on geographic features and position rather than on the basis of a uniform grid. Since 
the partitions this model imposes on our terrain are not necessarily of equal or regular size, the division of the 
terrain space is referred to as an “irregular tessellation”. 

There seems to be a hierarchy of four basic partitions in the vector model: point, line, plane and solid. All four 
of these objects are defined using the standard Cartesian coordinate system. A point is thus represented by a single 
coordinate tuple (x,y,z). A line is a sequence of these points which forms a straight edge. A line has length and 
direction and is represented as a sequence of coordinate tuples. A surface (surface in plane is area or polygon) could 
probably best be described as a “simple cycle” bounding a region. A simple cycle is a sequence of points where the 
start and the end of the sequence are the same point. A solid is the basis for 3-dimensional geometry. The extent of a 
solid is defined by the boundary surfaces. 

2   RSDD-Based Spatial Data Type 

Most spatial databases cannot manage vector data and raster data in a uniform way. Markus Schneider has 
introduced realm concept in Ref.[11]. A realm is a set of points and non-intersecting line segments over a discrete 
domain. Realm-based spatial data types are called POINTS, LINES, and REGIONS. Realm can successfully 
manipulate 2-dimensional spatial data. It can enforce geometric consistency of related spatial objects, guarantee 
nice closure properties for the computation with spatial data types, shield geometric computation in query 
processing from numeric correctness and robustness problems, and be used as an index into the database[12]. But, 
realm does not deal with 3-dimensional spatial data. In order to manage 3D data, we extend realm concept to 
3-dimensional space, called RSDD(Regularly Spatial Discrete Domains). The topological relations and the 
operations defined on 3D space are more complex, thus the extending of RSDD from 2D to 3D should not be a 
simple extension. 

With regard to terminology and definition of topological relation of 3D spatial object, please refer to Ref.[13]. 
Now, we define a Regularly Spatial Discrete Domain (RSDD) and RSDD_based Primary Objects (RPOs), such 

as RPO-point, RPO-line, RPO-plane and RPO-solid, as 
well as some predicates and operations on them. All 
definitions are based on error-free integer arithmetic that 
enables direct and robust implementation. Let N = {0, ..., 
n-1}, 0, ..., n-1 be integers. As depicted in Fig.1, the RSDD 
is a set of points in N×N×N. A point in RSDD is called 
RPO-point, i.e., a RPO-point is a tuple (x, y, z)∈N×N×N. 
A RPO-line is a segment whose ends belong to N×N×N. 
A RPO-plane is a polygon composed of coplanar 
RPO-lines and includes inside this polygon. A RPO-solid is 
a solid whose boundary consists of RPO-planes. 
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Given N, let PON  be a set of all RPO-points, LIN  a 
set of all RPO-lines, PLN  and SON are set RPO-planes and 
RPO-solids, respectively. A RSDD-based Object is a set 
RO＝POsub ∪ LIsub ∪ PL sub∪ SO sub such that: 

Fig.1  RSDD and RSDD-based Primary Objects 

(1) POsub ⊆ PON,LIsub ⊆ LIN,,PLsub ⊆ PLN, SO sub ⊆ SON; 
(2) ∀l∈LIsub:l = (p1, p2), p1∈ POsub ∧ p2∈ POsub; 
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(3) ∀p∈POsub,l∈LIsub: ¬(p in l); 
(4) ∀l∈LIsub,s∈PLsub: when ¬(l in s) ∧have intersection,(intersection of l and s) ∈ POsub; 
(5) ∀l∈LIsub,v∈SOsub: when ¬(l in v) ∧have intersection,(intersection of l and v) ∈ POsub; 
(6) ∀s∈PLsub,v∈SOsub: when ¬(s in v) ∧have intersection,(intersection of s and v) ∈ POsub∪ LIsub; 
(7) ∀l1,l2∈LIsub: ¬(l1=l2)∧¬(l1 and l2 intersect) ∧¬(l1 and l2 overlap); 
(8) ∀s1,s2∈PLsub: ¬(s1=s2)∧¬(s1 and s2 intersect) ∧¬(s1 and s2 overlap); 
(9) ∀v1,v2∈SOsub: ¬(v1=v2)∧¬(v1 and v2 meet in plane) ∧¬(v1 and v2 overlap); 
Intuitively, a RO is a set that composed of RPOs. Its points locate in grid points of RSDD. The two ends of its 

lines also locate in RSDD and there are no other RPO-points on the lines except ends. For the relation of RPO-lines 
and PRO-planes, either there is no intersection or their intersection is a RPO-point. For the relation of RPO-lines 
and PRO-solids, either there is no intersection or their intersection is a RPO-point. For the relation of RPO-planes 
and PRO-solids, there is no intersection or their intersection is a RPO-point, or RPO-lines. For the relation of two 
RPO-lines or two RPO-planes, they are not equal to each other and there is no intersection and overlap. For the 
relation of two RPO-solids, they are not equal to each other and do not meet in plane and overlap. 

With the above assumption, we can manipulate the spatial object only to operate on ROs. For manipulating 
ROs, we need three groups of operations. The first group of operations contain Insert, Split and Delete, which are 
fundamental operations on ROs. The Insert operation takes a RO and a RPO as operands. The Delete operation takes 
a RO and the identifier of a RO as operands and removes the object from the RO if it doesn’t violate certain 
integrity constraints. The Split operation can be divided into three sorts, i.e., divides a RPO-line into its 
sub-RPO-line, divides a RPO-plane into its sub-RPO-plane, and divides a RPO-solid into its sub-RPO-solid. The 
second group of operations support the management of two-way linking between ROs and components of spatial 
attribute values in the database, such as Register, Unregister and GetRO, etc. Here Register informs a RO roid (i.e., 
RO identity) to a spatial component scid (i.e., spatial component identity) which is depending upon. Unregister 
removes such information. GetRO returns the geometry. The third group of operations support the selection of ROs 
for the construction of spatial object, for example, Cube, Identify, and so on. Cube returns all ROs together with 
their roid inside or intersecting a given cube. Identify tries to identify a RO close to the RPO-point given as an 
operand [12]. 

Having the RSDD concept, like in Ref.[11], we can define some structures and discuss the relationships 
between these structures. The difference here is that we must consider the relations between 3D ROs. 

3   Spatial Data Manipulation in the Relational Database 

Both raster data and vector data related to GIS, the representation of spatial data is quite complex. GIS 
software vendors have employed a variety of techniques to store spatial data and to link these data with geometry 
features. All approaches, however, use the concept of a database management system (DBMS) to allow the user to 
define the specific data element types and formats. A DBMS allows a user to describe the particular contents of a 
database and the formats of data elements (e.g., integer, decimal, date, character). Although the relational DBMS 
model for storing attributes is, by far, the most popular approach in the GIS software industry, the relational model 
is based on the storage of attributes as the standard set of data type (integer, real, string, etc), so the fundamental 
question is how to represent geometry. 

As we discussed above, the problem to manage spatial data and to represent geometry can transmit to 
manipulate ROs. A RO is composed of primitives such as RPO-points, RPO-lines, RPO-planes and RPO-solids. All 
primitives can be expressed using points in N×N×N. So, we can store ROs in relational database, either they are 
RPO-points, RPO-lines, RPO-planes, or RPO-solids. In other words, we can store spatial points, lines, surfaces and 
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solids in relational database in a uniform format. Because the RO has a finite expression, we can solve the conflict 
between the infinite precision real numbers of spatial object and the finite precision number systems of computers. 

Once the realm concept has been extended to 3-dimension space, it allows the storage and management of all 
spatial data (features, attributes, and even raster data) in a relational database. This architecture moves away from 
the traditional concept of a GIS database in which spatial data is stored in a proprietary graphic format and tabular 
attributes are stored in a separate database table. The general concept for spatial data in the relational database is 
presented in Fig.2 by Entity-Relationship model. 

Figure 2 describes the database schema. A feature table or view corresponds to a feature class. A feature is an 
object with geometric attributes[14]. Each feature view contains a number of features represented as rows in the 
view. Each feature contains a number of geometric attribute values represented as columns in the feature view. Each 
geometric column in a feature view is associated with a particular geometric view or table that contains geometry 
instances. The correspondence between the feature instances and the geometry instances shall be accomplished 
through a foreign key that is stored in the geometry column of the feature table. This foreign key references the GID 
primary key of the geometry table. 

Geometry ID

Feature table

Non-Spatial
attribute1

Non-Spatial
attributeN......

Geometry table

Sequence

CoordinateEntity type

Entity
sequence

Relation

 
Fig.2  RDBMS-Based spatial data architecture 

In the geometry table or view, the normalized geometry implementation defines fixed width tables such as the 
example in Fig.3[15], the case of 3D is similar. Each primitive element in the geometry is distributed over some 
number of adjacent rows in the table ordered by a sequence number (SEQ), and identified by a primitive type 
(ETYPE). Each geometry identified by a key (GID), consists of a collection of elements numbered by an element 
sequence (ESEQ). 

(60,30)(0,30)

(60,60)(0,60) (30,60)

(60,0)(0,0) (30,0)
GID1

GID2

GID3

GID4 (50,15)

(40,5) (50,5)

(40,20)(45,20)

(45,15)

 

GID ESEQ ETYPE SEQ X0 Y0 X1 Y1 X2 Y2 X3 Y3 X4 Y4 
1 1 3 1 0 0 30 0 30 30 0 30 0 0 
1 2 3 1 10 10 20 10 20 20 10 20 10 10 
2 1 3 1 0 30 30 30 30 60 0 60 0 30 
3 1 3 1 30 0 60 0 60 30 30 30 30 0 
3 2 3 1 40 5 50 5 50 15 45 15 45 20 
3 2 3 2 45 20 40 20 40 5 Null Null Null Null 
4 1 3 1 30 30 60 30 60 60 30 60 30 30 

Fig.3  Example of geometry table for polyogon geometry in plane 

  



 朱铁稳 等:基于关系数据库系统的空间数据处理方法 13 

The rules for geometric entity representation are defined as follows[15]: 
 ETYPE designates the geometry type.  
 Geometries may have multiple elements. The ESEQ value identifies the individual elements. 
 An element may be built up from multiple parts (rows). The rows and their proper sequence are         

identified by the SEQ value. 
 Polygons may contain holes, as described in the geometry object model. 
 Polygon rings must close when assembled from an ordered list of parts. The SEQ value designates the part 

order. 
 Coordinates that are not used must be set to Null in complete sets. This is the only way to identify the end 

of list of coordinates. 
 For geometries that continue onto an additional row (as defined by a constant element sequence number or 

ESEQ) the last point of one row is equal to the first point of the next. 
 There is no limit on the number of elements in the geometry, or the number of rows in an element. 

4   Conclusion 

In this paper, we extend the Markus Schneider’s realm concept to 3-dimensional space, thus introduces the 
RSDD concept. The realm and RSDD concepts solve several problems related to spatial data type for database 
system[12]. In particular, it solves the problems of numerical robustness, topological correctness and geometric 
consistency. For spatial data types and spatial databases, this is a satisfactory solution according to generality, 
rigorous definition, finite resolution and geometric consistency criteria. Our contribution is to manipulate spatial 
data in 3-dimensional space. Because of the RSDD, we can manage 3D spatial data uniformly in relational database. 
Thus it provides a method by using relational database to manage spatial data. 
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摘要: 目前,大量的数据都是通过数据库管理系统(DBMS)进行存储和管理,关系数据库是解决数据处理问题的最成
熟和最有效的工具.在地理信息系统(GIS)的应用中,是利用所谓的空间数据库来管理、分析和观察空间数据.因为空
间数据包含许多不同的数据格式和结构,这些复杂数据导致了对空间数据的操作和处理是非常复杂和困难的一项
工作.提出了一种利用关系数据库的成熟技术来解决空间数据处理的方法,思路是引入 RSDD(regularly spatial 
discrete domains)概念,并定义基于 RSDD 的基本对象 RPO(SDD_Based primary object)和对象 RO(RSDD_Based 
object)概念,这些概念能够解决空间对象实数表示的无限精确性和计算机处理的有限精度之间的矛盾. 
关键词: 关系数据库;空间数据库;RSDD;GIS 
中图法分类号: TP311      文献标识码: A 
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