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Abstract ; The problem on livencss judgement is still open in Petri nets. The paper studies liveness on Asym-
metric Choice nets (AC nets) by structure analysis theory. Firstly, some known results on liveness are dis-
cussed. Then a sufficient condition by S-invariant for the liveness of AC nets is presented and the corresponding
polynomial-time algorithm is got. Finally a simple necessary-and-sufficient condition on menotonicity of bounded
AC nets is presented.
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Petri nets are well kncwn models for the representation and analysis of distributed systemst), Liveness is one
of the main behavioral properties of Petri nets. For classes of P/T nets with a restricted modeling power. liveness
can be structurally characterized end efficiently decided under the boundedness hypothesis®~,

A common property to these restricted classes is that liveness is ensured by checking some particular sets of
places, Deadlocks are critical system parts for liveness analysis, because transitions may never be enabled again if
they contain places of an unmarked deadlock in their preser. Like deadlocks, there are also system parts which will
never lose all tokens again after they have once been marked. For these classes, the existence of deadlocks keeping
marked is a necessary and sufficient condition for the net to be live. Hence every deadlock of the net must be con-
trolled to ensure that the deadlock remains marked for every reachable state. There are two ways of controlling a
deadlock. The first one relies on the coneept of trap™), The second one is based on the concept of invariantJ,

For asymmetric choice nets (AC nets), a lot of research efforts on liveness analysis still go on and some good
results have been gott*~ ™1,

In this paper, we get a sufficient condition for liveness of AC nets by controlled deadlocks. Controlled dead-
lacks cannot get unmarked. The mechanism that prevents a controlled deadlock from getting unmarked is quite dif-
ferent from a marked trap inside the deadlock. This condition decreases the complexity to check liveness for some
AC nets. On the basis of Refs. [10~13], we also present and prove & nceessary and sufficient condition on liveness
monotonicity of bounded AC nets in order to simplifying the previous judgement method.

The paper is organized as follows. In Section 1, we introduce some basic concepts and notations of F/T nets
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used here. Besides several important properties and results of AC nets, we give our results and prove them in Sec

tion 2. Finally, we discuss future work and conclude the paper.
1 Basic Definitions and Notations

1.1 Place/Transition net system

Definition 1. 1. A net is a tuple N= (P, T;F) with

{a) P and T are finite and disjoint sets, which are places and transitions, respectively;

() Fo(PXTYU(T X P,

(c) dom{(F)Jcod (F)=PUT, where dom(F)=1{z|3 y: (3, 2)EF},cod(F)=4x|3 y; (v, 2} € F}.

The preset of a node xEPIJT is defined as "z={y& PUUT|(y,2)E F}. The postset of 2a node z€PUT is
d\efined as x' ={yCPUT|{{x,»)& F}. The preset (postset) of a set XS (PJT) is the union of the preset (post-
set) of the elements of X.

Definition 1. 2. Let N=(P,T;F} be a net.

1. A marking of 2a net N=(FP,TF) is a mapping M ;P-—+_4", where .4 ={0,1,2,3,...}.

2. The pair (N,M,) is a Place /Transition net system or marked net, where M, is the initial marking.

3. A transition 1€ 7T is enabled under M, written as M[s>>, iff ¥ p€ "1 M(p)>0.

4. If M[¢>>, the transition 2 may oceur, resulting in @ new marking M’ , written as M[s>>M' with

MGpy—1 if pe ey
M (py=<M(p)+1 if pEr \'t¢
M{pr otherwisc
for all p€ P.

5. The set of all reachable markings, written as [M;>>, of a marking M, is the smallest set, such that M, &
(M= and ME [M,> A M=M= M € [(M> hold.

6. I ML >M. (6.2, .. [t.>>M,, then a=t1,.. . 2. is an occurrence sequence.

Definition 1. 3. Let (N,M,) be a net system and N=(P,T;F).

A transition t€ T is live under Me, iff ¥ ME[AM > I M S [M>; M[>.

The net N is dead under M, . iff there does not exist t €T such that Ma[r>>.

. The net N is deadlock-free under M,, iff ¥ ME[M,>,3 € T . M[>.

The net N is live under M,, iff ¥ tE T ¢ is live under M,.

Let the net N be live under M,. The liveness of N satisfies manotonicity if ¥ M=M,.N is live under M.

Definition 1. 4, Let (N,M,) be a net system and N=(P,T;F). (N,M,) is bounded iff 3 € 4",¥ ME&[M,
=¥ pEP . M(p)<it.

Definition 1. 5. Let N=(P,T;F) be a net.

1. N is structurally bounded iff net system (N,M;} is bounded for every M,.

ooe W e

2. N is structurally live iff there exists an A, such that net system (N,Af;) is live.

Definition 1. 6. Let N=(P,T;F)be anet. PP, T'="P'UP" . F=FNUP' XTHU' XP'I. N'=
(P"\T';F'} is a subnet of N generated by P'.
1.2 Invariants

Anet N=(PT;F)ispure { ¥V pEP YV tET  (p,tIEF A (t.$) € F can not hold together. We consider
pure net in this paper.

Definition 1. 7. Let N—(P.T;F) be a net and let 2 be an integer.

1. A column vector ¥V P—+Z indexed by P is a P-vector.

2. A column vector W, T—2 indexed by T is a T-vector.
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3. A matrix C1P XT—Z indexed by P and T such that
—1 if pE€ ¢’
;= 1 if perN\e
0 otherwise
for all p€ P and for all t€ T is the incidence matrix of N.

We denote column vector where every component equals 0 by O.

Definition 1, 8. Let N=(P,TF) be a net.

1. I is an S-invariant of N iff I™ = C=0",

2. Py P is the support of I iff Py={p€ P|I{p)#0}.

1.3 Deadlocks and traps

Definition 1.9. Let N=(P,T;F) be a net.

1. A nonempty set HC P is a deadlock iff "HITH ",

2. A nonempty set S is a trap iff 711" <" 11,

3. Let H be a deadlock (trap). H is minimal iff there is no deadlock (trap) contained in H as a proper sub-
set.

4. Let H be a deadlock (trap). H is maximeal iff there is no deadlock (trap) that contains H as a proper su-
perset.

A place p€ P is marked by a marking M iff M{(p)>>0 and a nonempty set of places F/C P is marked by
marking M iff at least one element of F is marked. Obviously, if a deadlock lost all tokens it remains unmarked
and if a trap gained at least cne token it remains marked.

1.4 Some subclasses of P/T nets

Definition 1. 10. Let N=(P,T;F) be a net,

1. Nis a Frecchoice net iff ¥ p€ P, 1p" |>1=>"(p " I={p}

2. N is an Extended Free-choice net iff ¥ 2, € Popy" Npy” 7 9= 1 =p2 .

3. N is an Asymmetric choice net ifi ¥ p1, 0, EPpr N " F ¢= oo Spe" VP2 &

2 The Liveness and Monotonicity of AC Nets

2.1 The liveness of AC nets
Theorem 2. 1. “ An AC net system (N, M,) is live if every (minimal) deadlock in N contains a marked trap.
By Theorem 2.1 we can judge the liveness for some AC net systems, but there exist some AC net systems
which are live but have deadlocks containing unmarked or no traps. For example, the AC net shown in Fig. 1is
live even though the deadlock {f1s#z:£5+ 24! does not contain any trap.
~ ty Ps From Ref. [14] we found a necessary and sufficient condition of liveness of AC
by 73 nets.
t ty Ly wis Theorem 2. 2. ' An AC net system (N, M) is live iff for every minimal dead-
lock H in N.¥ M€ [M.> . M(H)21.
; We can decide whether an AC net system is live or not theoretically through
Fig.1 A live AC net
Theorem 2. 2. First, all reachable markings from M, and all minimal deadlocks have
to be computed, then for every reachable marking M we have to judge whether every minimal deadlock is marked
under M or not. For example, we will give the following outline of algorithm checking the liveness of AC net sys-
tems whose places number is » and is £-bounded.
Algorithm 2. 1 (outline).
© hEE

http:/ www. jos. org. cn




RA F A KRR RAER G~ A HE 343

Input  (N,M,) and N=(P,T1F) is an AC net, C is its incidence matrix.
Output Yes (N,M,) is live.

No (N,M,) is not live.
Step 1 Computing 8!l reachable markings [M,>.

UMe[M>, 36T ME>M then M =M+C(—,)

(C(— 4] represents the ¢ column of C}

Step 2 Finding sl minimsal deadlocks. {The step can be referred to in [5. }

Step 3 For every reachable marking M € [M,> and every minimal deadlock H,

it M(H)=0 then output “No”,
. else output “Yes”,

We give the complexity analysis of Algorithm 2, 1.

Theorem 2. 3. Let N=(P,T;F) be an AC net whose places number is n and is &-bounded. M, is its initial
marking. The worst case time complexity of the Algorithm 2. 1 is OG®k*).

Proof. (1) The places number of AC net is » and every place is A-bounded, then the worst case time com-
plexity of getting [My>>, i.e. Step 1. is O(&"),

(2) From Ref. [5], we know that the worst case time complexity of finding a deadlock is O(|T (| P |+ |T |+
{F13). But the number of minimal deadlocks is |2 at most, so, the worst case time complexity of Step 2 is G|
PUTIUPIHITIHIF]), ive. OW*).

(3) For every reachable marking M from M, checking whether a minimal deadlock is unmarked or not needs
time O(xn). But, the number of reachable markings is £” at most and the number of minimal deadlocks is n at most,
So. the worst case time complexity of Step 3 is O(n4"). In many cases, n’k">>n', take the worst case time com-
plexity of Step 3 as the algorithm complexity. O

Theorem 2. 3 tells us that the time complexity of Algorithm 2.1 is exponential in the worst case. In the practi-
cal point of view it does not work. But, we know that an AC net system is live il and only i its every marked mini-
mal deadlock cannot get unmarked through Theorem 2. 2. So, we can try to find practical algorichms that can
iudge whether some AC net systems are live or not.

Definition 2. 1. Let (N.M,} be a net system, I be an S-invariant and /T P be a deadlock of M. The dead-
lock H is controlled by the $-invariant I under M, iff I » M, >0AY pE€ P\H .J(p><C0.

Theorem 2. 4. Let ; == {N,M,) be an AC net system. 2 is live if every minimal deadlock in N is controlled
by an S-invariant under M,.

Proof. Let H be a minimal deadlock in NV and I be an S-invariant. £ is controlled by I under My, so I ® M,
2OAY p& PNH I(p)<I0. Since for ¥ ME M, > . F x My=1I'% M. >0, so only the places of H have positive en-

tries in /. Hence, M{2)>1, The AC net system 2‘1 is live according to Theorem 2. 2. [

In order to check liveness for a given initial marking of a finite AC net through Thenrem 2. 4, we have to find
all minimal deadlocks and S-invariants. Then, we check whether every minimal deadlock is controlled by an S-in-
variant under the initial marking. So, we can analyze the worst case time complexity of the algorithm based on
Theorem 2. 4 through the following Theorem 2. 5.

Algorithm 2. 2. (outline)

Input (N ,M,) and N is an AC net, C is its incidence matrix,

Output Yes  (N,Mo) is hive.

No liveness of (N,M;) can not be judged.
Step 1 Finding all minimal deadlocks.
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Step 2 Getting a basis of S-invariants for the sclution of X7+ C=0 (X is a vector}.
Step 3 For every minimal deadlock finding an S-invariant that controls it.
If the S-invariant can not be found then ocutput “No”.
else output “Yes”.

Theorem 2. 5. Let N=(P,T;F} be an AC aet and C its incidence matrix. The worst cese time complexity of
Algorithm 3.2 is O P2 (max (| P |T[2¥).

Proof. (1) We know that the worst case time complexity of finding a minimal deadlock is OC[T | ([P +|T
[ |F{)) from Ref. [5]. The number of minimal deadlocks is | P! at most, thus the worst case time complexity of
getting all minimal deadlocks, i.e. Step 1, is O(|P| TP+ T+ 1Fi).

(2) In order to get a basis of S-invariants, we need to solve the homogeneous linear equation system X # C=
0. Through linear algebra, and we know its worst case time complexity is O((max ([P |, [T [))7).

(3} We know that every S-invatiant is a linear combination: of the basis generated by Step 2. Judging whether
a deadlock is controlled by an $-invariant or not needs at most |P| time. Sa, for every minimal deadlock the worst
case time complexity of checking whether it is controlled by an S-invariant is O¢C|P | tmax ([P |, [T {33%). The
number of minimal deadlocks in a net is [P ! at most. Thus, the warst case time complexity of Step 3 is O Pf
(max (| #{.|T132*). Therefore, for Algorithm 2. Z. , its worst case time complexity is OC, P |*(max (| P |, |T
[13*), i.e. polynomial time. O

Example 1. An AC net is shown in Fig. 1. '=(1,1,1,1,--1) is its S-invariant. I' * M,>0, H={p,.pa: fa.
#4} is a minimal deadlock and I{gs) =—1<50, H is controlled by J under M, and H is the unique minimal deadlock
of the AC net. So we are sure the AC ner system is live according to Theorem 2. 4.
2.2 The liveness monotonicity of AC nets

The liveness of an AC net, generally, does not satisfy manotonicity. It is very important as we have a conjee-
ture that there are some polynomial time algorichms for liveness if the liveness satisfies monotonicity, otherwise

generally there are no polynomial time algorithms for liveness.

Thearem 2. 6, "> %1 Let N=(P.,T4F) be an AC net. If ZU: =(N,M,) is live, then ¥ M;, M.Z=>M,. Z =(N,
M) is live ill every nonempty minimal deadlock in N contains a trap marked under M. For bounded AC nets, we
still can ger a better result about liveness monotonicity.

Lemma 2. 1.7 Let N=(/,7;F) be an AC net.  is its minimal deadlock iff H is strongly connecred
deadlock and far ¥ € H*: | tMH | =1

Theorem 2.7. Let N be a structurally bounded AC net. Every minitnal deadlock # of N contains a trap if H
is & trap.

Procf. “=" Since every minimal deadlock contains a trap, let M, be a marking that marks all these traps, so
; ={(N,M,) is live and bounded. Suppose there exists a minimal deadlock A which is not a wrap, Let H be its
maximal trap, H' CH, So 31 ¢€ "H but t& H'". Since | "¢[1H'|=1 according to Lemma 2. 1, and ZU: is live.
Oceurring of ¢ will increase tokens of H' and ¢ can occur infinitely. Hence contradict the condition of boundedness.
S0, any minimal deadlock of N is a trap.

“e=" Obvious. 1

Theorem 2. 8. Let N=(P,7T;F) be an AC nct and Z = (N,M,) be live and bounded. ¥ M,.M,>M,. 2 =

(.M. is live 1ff every minimal deadlock of ¥ is a marked trap under M,.

Proof, “=" =(N,M,) is live and its liveness satisfies monotonicity. By Theorem 2. 6, every minimal
q
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deadlock of N contains & marked trap, Since E is bounded, from the proof of Theorem 2. 7 we know that every
L]

minimal deadlock of N is a trap. So every minimal deadlock of N is a marked trap.

“e=" If every minimal deadlock of N is a marked trap under M,, since M,=M,. every minimal deadlock of N

is also a marked trap under M.. So, Z,) =(N,M,) is live. O
Example 2. An bounded and live AC net system is shown in Fig. 2. The net system will not be live if we add
atoken in ps. Because {p,.p,.p5>p,} i5 2 minimal deadlock which is not a trap.
Theorem 2. 8 simplifies judgement of Theorem 2. 6 for liveness t £
monotonicity of AC nets. We can directly get the following corol-

lary through Theorem Z. 8.
Coroflary 2.1. Let ; = (N,M;) be an AC net system. I ev-

Ps
Fig. 2 A bounded and live AC net system

ery mimimal deadlock contains a marked trap, but there exists at

least 2 minimal deadlock which is not a trap, then the AC net sys-

tem E is unbounded.
o

3 Conclusion

In this paper we have introduced a sufficient criterion for the liveness in AC net system by controtled dead-
lock, At the same time we also have got a necessary and sufficient condition for liveness monotonicity of AC nets.
Although the conjecture about liveness monotenicity and practical way, i, e. polyncmial time algorithms for the
judgement of liveness. is still open, by analysis of liveness monotonicity of AC nets, we have known tc 2 certain
extent that we understand better about AC nets liveness. We may have chance in the future to search for the
biggest subclass of AC nets satisfying liveness monotonicity and to discover and invent polynomial time algorithms

for their liveness.
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