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Abstract ; Financial data mining is one of the most challenging research directicns in information society.
Financial data with random characteristics make it difficult to find out the rule hidden in dara. Tn this paper. it
is pointed out that correlation coefficient can net capture nonlinear information, which is the serious defect of
classic correlation analysis. Furthermore, the properties of the high-order correlation coefficient are dis-
cussed, and it is proved that high-order correlation caa not only describe the hidden nonlinear correlation, but
also fill up the space between classic correlation and independence. The computational simplicity makes the
high-order correlation coefficient be an effective technique to track nonlinear relation between variables. Final-
lys the above results are applied 1o the correlarive analysis between stock price and stock trading volume, and
the computing results show that the high-order correlation coefficient can track the time-varying nonlinear
characteristics,
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Financial data mining is one of the most challenging research directions in information society
data are of random characteristics, which makes it difficult to find out the rule hidden in data. The traditional
assumption was founded upon the theory of market efficiency, which stated simply the so-called “random walk”
model in statistical terms. Yet this posed a serious dilemma between theory and practice as trader did continue
to make profits in short term'™,

Econometric tests specified a more general model for the time scquence behavior of asset returns, including
auto-regressive and other terms, but it only provided a .inear structure, Generzlly speaking., it is difficult to de-
scribe the nonlinear structure of capital markets. Based on the correlation dimension, Brock W. put forward a
method that can test for independence in 1987%, and then presented a further general test for nonlinear Granger
Causality in 19927, N.Refenes conducted the study of neural network method in 18977\, It turned out that un-

der those modei-based test procedures, it is possible to reject the special hypothesis of random walk. Brock’s
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model needs the normal distribution hypothesis and the above models have the defect that they can not illustrate
the time-verying dynamic characteristics of nonlinear structure of capital markets.

In this paper. high-order correlation coefficient is discussed. and for the first time we have proved that
high-order correlation can fill up the space between correlation and independence. The high-order correlation co-
efficient is easy to compute and the computing results show that it can capture the titme-varying characteristics of
financial data, which is very useful to build dynamic financial prediction model.

The description of relationship between random variables involves two concepts: one is covariance Cov (X,
Cov(X,¥) b
(X)lfzvar(Y)u‘z !
is independence, or Flx,y)=F(£)F(y), where F(x,y) is a joint distribution functicn and F( « ) is a distribu-

Y) . or correlation coefficient Pxy =7 where Var(X) is the variance of variable X; the other

tion funetion. The correlation coefficient is easy to compute whersas the independence is difficult to justify.

It is all known that if X and Y are independent. then they are not correlative, but the opposite is not true.
From view of statistics, if X and ¥ are not correlative, it only shows that there is no obviously linear correlation
herween X and Y, but it is nnknown whether nanlinear relarion exists or not.

Frample 1.  |pw | =12Y=aX+4, a.s. .

Erample 2.  Suppose that Y=X%and X~ N(0,1), where N(0,1) is a normal distribution with zero mean
and unit variance, then Cov(X,Y)=0, and px =0.

Example 1 clearly shows the linear nature of correlation coefficient. whereas Example ? shows the serious
defect, i. e. . correlation coefficient can not capture noniinear information. Hence, it is the key problem to deter-
mine the space between correlation and independence,

In next scetion, this preblem will be completely solved with the definition of high order correlation coeffi-

cient,

1 Definition and Theorem

We first illustrate an example.

Ezample 3. LetY=cos(X),X~U(0,2r), where I (0,2x) is & uniform distribution. Then we can get the
following results

oxy =0. 0451, px2y=0. 234, pxdy=0. 345, pxy=0. 463, px5y=0.517.

The compnted results show that Cov(X*,Y) or pyty,#=1,2,3.._, can describe the hidden nonlinear corre-
lation, so we introduce high-order correlation.

Definition I. [f there exist two positive integers £.{ such that Cov(X*,Y*)7°0, then we say there is (k,/)-
order correlation between X and Y. Cov(X*,Y") is called (%.)-order rovariance and py*y is called (%.[)-order
correlation coefficient.

It is obvious that oxy is the simplest situation while #=I=1. 1f £>>1 or {>>1, then we say there is high-or-
der correlation between X and ¥. Tn Example 2, we can get pxiv=1, i.e. , X and Y are of (2,1)-order correla-
tion.

Theorem 1. Suppose that X and Y are two random variables with |EX*|<(co, |EY'| <0, |EX*Y!|<Cwo,
then X and Y are independent if and only if px*y"—0, for £,{—1,2,3,....

Proof. First note that E(X*—EX*) (V' —EY") =EX'Y'—EX'EY’, s0 px*»=0 is equivalent to EX*Y'—
EX'EY*=0. The necessity is obvious from the property of independent random variables. The sufficiency is
proved as follows.

Suppose EX*Y' —EX'EY'=0for £,{=1,2,.... Let F\(z),F;(¥),F{z,3) be the distributed functions of

random variables X,Y and random vector (X,Y) respectively. Thus the characteristic functions of X,Y and
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(X,Y) can be respectively denoted as f1(s), /. (£, f(s,2), where
FG)=Ee™=]ne™dF,(z), fyiz) =Ee”"=Lle"dez(y) s

f (..c,z):Ee“*“"'):J e gi e,
Considering the existence of EX*, EY' and EX*Y’, it can be obmained that EX*=7"*f{" (0), EY' =i~ f{" (0,
TN A AN D)

EX*Y'=i FrEy e’ From the given condition EX*Y' —EX*EY' =0, we get
, FHf G0 _ pm 0
FXp™ (:.1)2(00)_f1 (03« £37{0. (1

In terms of Taylor’s expansion formula, the following expressions can be derived

F1()y= 1003+ 10> » s—+.. + f(")(ﬂ)'.i+ (2
fz(t):fg(O)Jrfz(O)':+...——‘f§")(0)‘t"+... 3
Fls.)=F(0, 0)+3f(‘ 2 o HGB PSR | ;‘c:a"f(i’f) T
(o= 10,03 a (a5 = (0,03 PR (a1 =(0,0>
(0
With Eq. (1) and Eq. (4}, we have
Fw= 20201 s o) [ e @ o). )

For any real numbers s and ¢, there exist two real numbers sand ¢ with |5]<C 5], |z[{<(|¢|. Considesing Eys.

(2) and (3), power series 2 nl—rf{"’(O) - converges o f;(s) and 2 ni\ () 1" o fo(2) respectively.
a=0 1 a=0 i

= o
Then, the two series, 21 nl—'ff"’(ﬂ) » 5" and E n—llff") (8) + £, are absolutely convergent by the property of
rmu 1) g

power series. With the product property of absolutely convergent series, we have

£ fn=| i e SHORE 2 i) ) =

"2; ,;2( S fR0) e 5 ] [ G’f}‘k"}“?ﬂ”in(o) . 1'"4} =f(s.t).

This expression indicates that the characteristic function of random vector (X.,Y) can be expressed as the prod-
uct of those of random variahles X and ¥, i.e., randam variable X is independent of Y. So we prove the theo-
rem.

Thecrem 1 firstly gives an essential description of the relation hetween eorrelation and independence, i.e. ,
i there is no linear relation between X* and Y’ for every £./=1.2,3.... , then X and Y are independent. Theo-
rem 1 shows that high-order correlation fills up the spzce between classic correlation and independence. The fol-
lowing corallary gives an equivalent condition.

Corollary 1, Under the conditicn of Theorem 1, X and Y are independent if and only if Cov(E(X/Y),E(Y/
X))=0, where E(X/Y) is the conditional expectation of X to Y.

Proof is omirted.

Moreover, considering the difference between variable and dependent variable, we give the following utili-

tarian definition.

Definition 2. I Lhere exists a positive integer k such that Cov(X',Y )70, then we say there is 4-order cor-
relation between variable X and dependent variable ¥. If £2>1, then we say there is high-order correlation be-

tween variable X and dependent variable Y.
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Similarly we have the following results.

Theorem 2. Suppose that X and Y are two random variables with |EX* | <o, |EY|<(eo, |EX*Y|<=0,
then that variable X and variable Y are independent is equivalent to one of the following conditions

(1) pyety=0, for 2=1,2,3,...;

(2) Cov(Y,E(Y/X))=0,

Proaf is omitted.

It is obvious that pxy==0 in Example 3, but gz >0, £>1, so wc know there is high-order correlation be-

tween variable X and dependent variable Y.
2 Applications

The analyscs in above Examples 1~ 3 are done under the condition of having known function relation be-
tween X and Y. Next. we will analyze an actuzl example. The price curve in Fig. 2 gives actual stock price of
Shenzhen Development Bank CO. , LTD. from October 11 in 1995 to May 8 in 1996, denoted by S(z). Let X
E=E@)—5¢—1))/5¢—17 denote stock price ratic, Y ()= (AG) —~Ale—1)}/A(t~ 1) denote stock trad-
ing volume ratic and Z{z)=A(z}/A0 denote stock trading volume relative position. where A(z) denates trading
stock volume and AC denotes total stock circulation volume.

Figure 1 gives R1-value curve and R2-value curve where R1-value is the estimate of (2,1)-order correlation
coetficient between trading volume ratio and price ratio, and R2-value is the estimate of (2,1)-order correlation
coefficient between trading volume reletive position and price ratio according to actual transaction data and slid-

ing windows data processing techniguel™.
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R1: {Z,1)-order correlation between trading volume ratie and price ratio
R2: (2.1) order correlation between trading volume relative position and price ratin
Fig. 1
Moreover, let R1* =2 * R1+Mean(i5(:)}) and R2" =2 x RZ-+Mean({S¢)}). Price curve and {2,1)-or-
der correlation coefficient curve R1" between trading volume ratio and price ratio are described in Fig. 2, and
price curve and (2,1)-order enrrelation curve R2* between trading volume relative position and price ratio are

shown in Fig. 3.
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Fig. 2 Price and (2.1)-order correlation becween Fig. 3 Price and {2.1)-order correlation between
trading volume ratio and price ratio trading volume relative position and price ratic

From the computed results, we can draw the following conclusions;

(1) The stock price ratio has nonlinear correlation with stock trading velume ratio and the nonlinear corre-
lation is time-varying s

{2) The stock price ratio has nenlincar correlation with stock trading volume relative position and the non-
linear correlation is time-varying;

(2) The nonlinear correlation between stock price ratio and stock trading volume ratio is in accordince with
the non'inear correlation between stock price ratio and stock trading volume relarive position;

{4) Whether stock market prices follew random walks or not!® js time-varying, so enalytical results be-
tween price and volume are valid only when there exists the intensive correlation. The result is important for us
to do research. for example, association diseovery in finance marzets.

(5) Time-varying nonlinear correlation herween price and volume gives not only intensive support and im-
plication but also complication for applying neural network and chaas to study finance markets and to predict

stock pricel®,

3 Coenclusions

How to track the nonlinear time-varying information is an important issue in financial data mining. This ar-
ticle deals with the problem by the discussion of independence and classic correlation. The paper gives some ox-
amples and then proves that the high-order correlation coefficienzs can fill up the space between independence
and classic correlation. Furthermore, with the simplicity of computation, it is possible to capture all nonlinear
information with high-order correlation coefficienrs. Finally, we apply the results to analyze an actual problem,
the relation between stock price ratio and stock trading volume. The computational results show that high-order
correlation coefficients can effectively tracking the time-varying linear and nonlinear characteristics hidden in fi-

nancial data, and some interesting and useful results are obtained.
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