ISSN1000-9825 Journal of Software %t 4 5 3B 2000,11(1):158~172

Effect of Adaptive Interval Configuration on Parallel Mining
Association Rules’
HU Kan' CHEUNGD W? XIA Shao-wei*

YDepartment of Automation Tsinghua University Beijing 100084)
#{Department of Computer Science The University of Hong Kong Hong Kong)
E-mail; swxia@mail. tsinghua. edu. en/dcheung@cs, hku, hk

Abstract All proposed parallel zlgorithms for mining association rules follew the conventional fevel-wise ap-
proech. It imposes a synchronization in every iteration in the compuration which degrades greatly their perfor-
mance if they are used to compute the rules on a shared-memory multi-processor parallel machine. The defi-
ciency comes from the contention on the shared 1/0 channel when all processors are accessing the channel syn-
chronously in every iteration. An asynchroncus algorithm APM has been propused for mining association rules
on shared-memory multi-processor machine. All purticipating processors in APM gencrate candidates and
count their suppurts independently wilhoul synchronization. Furthermore, it can finish the computation with
fewer passes of database scanning than required in the level-wise approach. An optimization technigue has
been developed to enhance AI'M so that its performance would be insensitive to the data distribution. Two
variants of APM and the synchronous algorithm Count Distribution, which is a parallel version of the popular
serial mining algorithm Apriori, have been implcmented on an SGI Power Challenge SMP parallel machine.
The results show that the asynchronous algorithm APM performs much better, and is more scalable than the
synchronous algorithm.

Key words Association rule, data mining, parallel mining, shared-memory multiprocessor. transactional

database.

Mining association rules in large databases is an impartant problem in data mining"'~*l. The problem can be
reduced to finding all large itemsets with respect to a given support threshold. Large itemsets are determined by
computing the supports of the randidate itemsets. For this purpose. the mining process has to scan a large
database multiple times and to search through many candidates for the large itemsets. Because of the amount of
1/0s and computation. mining association rules in general is very costly. Therefore, there is a D.ractical need to
develop paraliel algorithms for this task. Many parallel algorithms for mining association rules have been pro-

[e~11]

posed for parallel machines with distributed shared-nothing memory In this work, we propose to solve

+ The research is supported by the National Natural Science Foundation of China (EHZH # B & & ,No. 79970052} and
by RGC (the Ilong Kong Research Grants Couneil) (No. 338/065/0032). HU Kan was born in 1970. Hc is a rescerch associate
at Department of Computer Science, Simon Fraser University, Canada, He received a Ph. D. degree on System Engineering
from Tsinghua University in 1998. His research interests are data mining. data warehousing and decision support systems.
CHEUNG D W is an associate professor of Department of Computer Science, The University of Hong Kong. His current
research areas include data mining on large data warehouse. XIA Shao-wei was born in 1932, She is a professor and doctoral
supervisor of Department of Automation, Tsinghua University. Her current research areas inciude large systems theory and
application, neunral computing and data mining. .

Manuscript received 19%88-01-20, accepted 1998-08-05.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— 160 — Journal of Software # 4% | 2000,11(2)

this problem on shared-memory multi-processor parallel machines such as the SGI Power Challenge or Sun En-
terprise.

In a parallel system with distributed shared-nothing memory, the database is partitioned and distributed
across the local disks of the processors. The processors rely on communication to coordinate their tasks. All
proposed algorithms for mining association rules in this model focus their design on tackling the following three
issues; '

(1) reduction of communication cost;

(2> reduction of compurtation by pruning unnecessary candidate sets;

(3) ensuring all candidates can reside in the memory by partitioning candidate sets across the processors.

One common aspect of all these algorithms is the adoption of a synchronous protocol to coordinate the ex-
change of support counts of the candidate itemsets at the end of every iteration. Their computation of the large
itemsets is organized by iterations such that all large itemsets of the same size are computed together at the same
iteration. In the following, we will explain that these synchronous algorithms are not suitable in the shared-
memory model.

In SMP (shared-memory multiprocessor parallel} machine, processors communicate with each other
through shared variables, the communication cost becomes a minor factor for the performance. On the con-
trary, the mining performance is dominated by the 1/0 cost. All general purpose SMP machines use shared stor-
age. The processors in these machines not only share the memory but also share the [/0 channels. In the dis-
tributed memeory model, processors access their own database partitions independently which are stored on their
local disks. There is no contention on the I/0 and synchronous algorithm is ideal for this case. In the SMP
case, the database will still be partitioned. However, these partitions are stored in the same shared storage sys-
tem and accessed by the corresponding processors via the same 1/0 channels. A synchronous algorithm applied
to this situation will create 1/0 contention in every iteration, which has a serious impact on the performance. A
major goal of this work is to propose an asynchronous algorithm for this task for the shared-memory model 10
reduce the I/0 contention.

A direct extension of the representative sequential association rule mining algorithm apriori to the distribut-
ed memory parallel model has been developed. Its implementation on the IBM SP2 is called CD (count distribu-
tion)1, CD by nature is a synchronous algerithm. A variant of CD adepted to the shared-memory model has
been proposed in Ref. [12]. This work concentrated on parallel candidates generation and the hash tree forma-
tion. However, since it is a synchronous algorithm, its performance suffers heavily from the I/0 contention.
From what we know, no asynchronous algorithm has been proposed for mining association rules on an SMP ma-
chine.

In this paper, we will propose an asynchronous parallel algorithm APM (asynchronous parallel mining} for
mining association rules on SMP machine. APM has the following merits .

(1) candidate sets are generated asynchronously by different processors and stored in a shared data struc-
ture in the shared memory;

(2) there is no major contention between the processors in accessing the shared data structure;

{3) candidate sets pruning is done by individual processors independently without synchronization;

(4) supports of candidates are counted asynchronously by all processors independently against their own
partitions, which reduces I/0 contention significantly;

(5) the number of passes with which the database is scanned is much less than that required in a syn-
chronous algorithm such as CD.

The candidate set generation technique used in APM is the dynamic candidate generation methods

© HIERRESSAHIIFTR http:/ www. jos. org. cn

Vo F AERXMET AR ASFRETGMER — 161 —

introduced in the DIC (dynamic itemset counting) algorithm®! for sequential mining. It is a break-away from the
conventional level-wise candidate set generation technique used in Apriori. Compared with Apricri, it generates
cendidates and starts to count their supports at a much earlier time. If the data distribution is homogeneous,
DIC can compute the large itemsets in fewer passes than the level-wise Apriori algorithm. One problem of dy-
namic candidate generation is the possibly larger number of candidates generated. To remedy this, we imroduce
& pruning technique by which a processor can asynchronously prune candidates by estimating upper bounds of
their supports. In our performance studies, we found out that APM is much more efficient ~han CD because of
the reduced 1/0 contention, fewer passes in database scanning and a much smaller set of candidates.

However, the dynamic candidate generation technique in DIC is very sensitive to the data distribution. Tt di-
vides a detabase into intervals and genetates candidares {rom these intervals instead of the entire database, If the
distribution of the itemsets in these intervals is very similar to that in the entire database, then the candidatas
generated from the intervais will contain very few false hits and DIC will be very efficienty otherwise, the gain
from using the dynamic technique will be greatly reduced by the overheads from the counting of the large num-
ber of unpromising candidates. To overcume this problem, we have developed an optimization technique called
AIC (adaptive interval configuration) o preprocess the database partitions for AFM. The output of the opti-
mization is a set of intervals for each partition such that the itemset distributions in these intervals are more ho-
mogeneous than without the optimization. The algorithm APM with this enhancement it called APM-AIC.

We heve implemented APM, APM-AIC and CD on an SGI Power Challenge shared-memory multi-proces-
sor machine with 8 processors and carried out an extensive performance study, We found out that APM and
APM-AIC have a much better performancethan CI). APM-AIC has a2 more stable behavior and is in general 3
times faster than CD. Our results also show that the main problem in CD is the synchronous 1/0 contention.
And the contention in APM and APM-AIC is significantly reduced becanse of the asynchronous access mode.
We also performed speedup study on the parallelism of the three algorithms. Both APM and APM-AIC have
nice parallel performanca.

The rest of thiz paper is organized as follows. Section I overviews the parallel mining of association rules.
The technigue of dynamic candidate generstion is described in Section 2. In Scetion 3, we discuss the details of
the APM algorithm. Adaptive Interval Configuration and an enhanced APM algorithm zre presented in Section

4. Section 5 reports the results of an extensive performance study. Section 6 is the conclusion.
1 Parallel Mining of Association Rules

1.1 Association rules

Let I={7)1izs... sIn} be a set of items and D be a database of trensactions, where each transaction T con-
sists of a set of items such that TS, An association rule is an implication of the form X=>Y, where X&I, YCS
Fend XNY= An association rule X=>Y has support s in D if the probability of a transaction in D contain-
ing both X and Y is 5. The association rule X=>Y holds in D with confidence ¢ if the probability of a transaction
in D which contains X but alsc contains Y is ¢. The task of mining association rules is to find all the association
rules whose support is larger than a given minimum support threshold and whose confidence is larger than a giv-
en minimum confidence threshold. For an itemset X, X. .., stands for its support count in database I, which is
the number of transactions in D containing X. An itemset X7 is large (or frequent) i X. o, =minsup X | D/,
where minsup is the given minimum support threshold. For the purpose of presentation, we sometimes use sup-
port to stand for support count of an itemset. It has been shown that the problem of mining association rules can

be reduced to finding all large itemsets for a given minimum support threshold.

© HEFRES AT http:/ www. jos. org. cn

— 162 — Journal of Software HAHFIH 2000,11(D)

1.2 Synchronous parallel mining algorithms

Apriori is the most representative sequential algorithm for mining association rules™. It relies on the apni-
ori—gen function to generate the candidate sets at each iteration. CD (count distribution) is a parallel version of
Apriori proposed for the distributed memory parallel systems™. In this model, the database D is partitioned into
Dy Dys ... s Dy, distribured and stored on the local disks of n processors. At every iteration (-th iteration),
each processor first computes the same candidate set C; from L, » the set of large itemsets found at the (#~—1)-
th iteration, and then scans its own partition to compure the local supports of the candidates in Ci. All the pro-
cessors then exchange their local supports by performing synchronous broadeasts. Following that, each proces-
sor computes the global supports of the candidates and finds out the globally large itemsets of size 4. CD repeats
these steps until no new candidate is generated. Note that the support count exchanges in CD are synchronized
in every iteration because each node must receive the counts from all other processors before it can determine the
globally large itemsets,

Several other parallel algorithms which use the data distribution approach instead of the count distribution
approach have been proposed. IDD (intelligent dara distribution) and HD (hybrid distribution) are the represcn-
tatives('], The main idea in the data distribution approach is to partition candidates across the processors. Each
processor is responsible for counting the supports of a subset of candidates assigned to it. Because of the distri-
bution of the counting responsibility, data in different partitions may have to be shipped across the network to
other processors. This approach is feasible only if the network bandwidth is large enough for moving the parti-
tions around. It is important to point out that all the ahove proposed parallel algorithms are synchronous and

not suitable for shared-memory parallel systems mainly hecause of the I/0 contention problem.
2 Dynamic Candidate Generation

The asynchronous candidate sets generation technique used in APM is a modification of the dynamic candi-
date generation technique developed in Ref. [3], It was developed for sequential mining of association rules in a
centralized database and was integrated into the DIC (dynamic itemset counting) algorithm™. Most association
rule mining algorithms use the level-wise approach established in Apriori to generate candidates by size. Follow-
ing that approach, no size-(%+1) candidates containing £+ 1 items can be generated hefore all size-# large item-
sets are found. As & consequence . size-% candidates will only be generated and counted in £-th iteration, and the
database must be scanned as many times as the leﬁgth of the maximum size large itemset, Dynamic candidate
generafion technique uses an aggressive approach to avoid this level wise problem by generating candidates with

partial information. It divides the database into a number of equal size intervals and assign checkpoints to the

boundaries between the intervals (Fig. 1). Dynamic zlgorithm

[T werssciens — [][]
— .. scans the database starting from the first interval. In the scan-
Database i : . . .
wf —=- Intervals Counting BFO%S. ning of an interval, all candidate itemsets found large in the in-

CheckPoint
Fig. 1 Dynamic candidate generation

terval will be used as generators to generate candidates at the
checkpoints for the next interval. In the first interval, the gen-
erators will be the size-1 large itemsets in the interval. In the subsequent intervals, size-# generators found in
one interval will be used to generate size- (24 1) candidates for the next interval. Therefore, candidates will be
generated by intervals instead of levels, and supports of candidates of different sizes will be counted rogether as
soon as they are generated. Furthermore, the total support of a candidate can be found after the scanning has
wrapped around the database with respect to the checkpoint at which the candidate was generated. The scanning
of the databese can be terminated when supports of all candidates are counted. Compared with Apriori, dynamic

algorithm could generate candidates and discover large itemsets much earlier. Hence, it may require fewer

© HIERRESSAHIIFTR http:/ www. jos. org. cn

YO F.OEERIRRELRBBNHTRETGHA — 163 —

pesses of database scanning than Apriori.
2.1 Performance issues on dynamic technique

The dynamic candidate generation technique is an aggressive and optimistic approach. [t uses partial infor
mation to generate candidates from intervals., There are two issues which allect the performance of this tech-
nique. The first one is the interval size used in the dynamic candidate generation. i.e. . the distance between
two consecutive checkpoints, With respect to the whole database, an interval is similar to a sample {from the
database. The larger the interval size is, the better it may represent the whole database. Then the dynamic
approach may generate fewer unnecessary candidetes (false hits} and hence incur less overheads in the counting.
However, it would perform more passes in the scanning of the database. On the other hand. a smaller interval
size advances the candidate set gencration carliezs and hence may require fewer passes over the database. How-
ever, it may generate more [alse hits, and the checking overhead may offset the saving in scanning. So the
choice of @ proper interval size is a key factor in the performance of dynamic technique.

Data distribution in the database is another factor affecting the performance of dynamic approach. In an
ideal scemario, the distributions of itemeets in all the intervals are very similar to each other, and hence very few
new candidates arc gencrated from the later intervals in the acanning. Therefores the scanning could be finished
with fewer passes, On the other hand, if the distributions are not very uniform over the intervals, many new
cendidates may be generated in a much later stage which would prelong the scanning of the database. In the
worst case, the number of passes required could be equal to that in Apriori. Therefore, a more homogeneous
distribution of itemsets over the intervals is desirable in the application of the dynamic candidate generation, In
order to have a more hamogeneous distribution, a random access of the transactions could be used. However, as
pointed out in Ref. [3], this approach could be expensive and may not work in snome cases. To tackle these two
performance issues. we introduce some technigues in APM to dynamically create a near optimal interval size and
10 eontzol the scanning of the transactions in the database to create a logically homogeneous distribution across

the intervals. Details will be discussed in Section 4.
3 Asynchronous Parallel Mining

In a shared-memory parallel machine, the model for computing the large itemsets is called common cendi-
dates partitioned database. The database D is stored in the shared storage system and divided logically into par-
utions Dy, Dy,..., D,, where n is the number of processors. Each processor counts the supparts of the cam-
mon candidates against its own parrition. Results of the counting are stored in & shared data structure in the
Memory.

3.1 Asynchronous dynamic candidates generation and counting

APM uses the dynamic candidates generation rechnique to generate the candidates asynchronously. In order
1 store candidates of different sizes, & trie instead of a hash tree is usad to store the supports. Figure 2 is an ex-
ample of the trie strucrture. In ity every node is associated with a candidate itemset. For example, in the first
branch of the trie, the nodes store the support for the candidates A, AB, ABC., AC, 2nd AD.

In order to generate candidates, each partition is divided into smaller intervals. The relations between the
database, partitions and intervals are ilustrated in Fig. 3. An itemset X is locally large in & partition D, if it 1s
large with respect to the number of transactions in D;. An itemset X is interval large in an intervel I if it is large
with respect to the number of fransactions in [, i.e. s its suppart count in § is not less than s X |f}, where s is
the support threshold.

For the simplicity of the discussion, we assume the trie contains all the irems . e. size-1 itemsets) initially

as the start up set of candidates (This start up condition will be modified for performance reason in Section

© HEFRES AT http:/ www. jos. org. cn

— 164 — Journal of Software ¥R 2000,11(2)

‘‘‘‘‘‘ - sernt)
: ! i iternID: [intervals
e " , TnterCounts TTT | VAN
i i LocalCounts (TTTY | pertifiony [[| | | |

branchMNot [J

]
prigon [T [T [1 J

database D
perttionDn [[[[T [|
Fig. 2 Trie and its node Fig. 3 Database, pardtions and intervals

3. 4), All the processors scan their own partitions in parallel. For cach processor. it starts its scanning in the
first interval and counts the supports of the candidates in the wie. The local supports of the cendidates with re-
spect to different partitions are stored separately on the trie. In the first checkpoint, the processor determines
which itemsets on the trie are interval large. These interval large itemsets are then used to generate new candi-
dates for the next iaterval. They are divided into groups by their sizes and the apriori_gen functiont® is applied
to them separately to generate new candidates. The new candidates are stored in the trie once they are gencrated
at the checkpoint. In the subsequent scanning of the other intervals , the same generation and counting processes
are repeated by intervals, and candidates are generated from the interval large itemsets found in the previous in-
terval at every checkpoint. Note that candidates generated by one processor is shared by other processors once
they are inserted on the trie. All processors perform this scanning and counting eycle in their own partition until
all candidates on the trie have heen counted by all the processors and no new candidate is generated. Some status
information for each processor is stored on the shared trie (Fig. 2) to facilitate the asynchronous candidate gen-
eration and counting. Different processors can perform new iternset insertion and support count updates concur-
rently on the trie. The only consiraint is that the local support of a newly inserted itemset by a processor will
only start to be counted by another processor on its partiﬁnn when the latter one starts 2 new interval scanning
eycle. This can be handled by a simple ready flag.
3.2 Asynchronous candidate set pruning

It is useful to prune away as many candidates as possible at a checkpoint before a scanning cycle starts. The
technique of glebal pruning proposed for distributed memory system is very effectivel’™.. Hawever, it relies an
the support counts of itemsets of one level to estimate the supports of the candidates in the next level to perform.
the pruming. Its original approach suits only the synchronous mode of operation. We modify it for the asyn-
chronous medel.

Suppose Dy, 155i<in, are the partitions of a database . For an itemset W, let us use W. n,q 1o denote the
local support of W in D, 155i<{n. Suppose X is a size-k candidate set. If YCX, then Y. wps =X, nptr s 1S
#. Therefore, the local support of X in D;y X. apey» is bounded by the velue minY, pi [YC X, and Y |{=k—

1}. Hence, the value

X. vy = 21K . sy
where X, npmpes =min{Y. upui |YCX, and |Y |=E—1} is an upper bound of the global support of X. If X, nyms
<sX ||, where s is the support threshold, then X can be pruned away. This is referred to as global pruning
in Ref. [10].
Note that global pruning requires the local suppert counts of all the size-(£—1) subsets of X to compute
the bound. In the asynchronous case, when a new candidate is generated by a processor, the local supports of

some of its subsets may not be available on the trie. We use 2 more conservative approach to estimate the bound

© HIEERES AT hip:/ www. jos. org. cn

BR F.AEPRRRIAXBARAFFRIEYSH4R — 165 —

in this case.

Suppose we want to determine whether a candidate X can be pruned at a checkpoint. Let YCX. Also sup-
pose a partition [;, 1<i<n, has been divided into m intervals and each interval has the length of M transac-
tions. If ¥ has been counted over t intervals in I;, and the accumulated support of ¥ over the ¢ intervals in D; is
Y. wpin» then ¥, .0 is bounded by Y. wpu+M X Gr—t). With this bound, we can compute a bound on X. ..,
similar to X. muxp. If the bound is less than 53X | D], then X can be pruned away. We call this technique upper-
bound pruning. This pruning technique would have a better effect on a candidate X if most size-(2— 1) subsets
of X have been counted in most of the partitions.

3.3 Removal of small itemsets on the trie

The size of the trie is an important perforrhance factor, which affects the cost of the traversing. A proces-
sor can traverse the trie at a checkpoint to identify both the globally large and globally small itemsets. All glob-
ally small itemsets found are removed by the processor before it starts a new counting cycle. All the supersets of
a small itemset on the same branch can also be removed. For example, if BC is globally small, then its superset
BCD on the same branch (Fig. 2) should also be removed. A simple locking mechanism is needed to ensure that
no processor is traversing inside the branch to be removed.

3.4 The APM algorithm

We present the APM algorithm as

/ % start up condition; all processors scan their partitions to compute local supports of size-1 itemsets;

then compute L, and C; and insert the sets in L; and C; in the shared trie » /

/ % parallel execution; every processor { runs the following fragment on its partition I); * /

(1) while (some processor has not completed the counting on all the itemsets on the trie on its partition)

2> { while (processor : has not completed the counting on all the itemsets on the trie on D))
3 { scan one interval on partition D: to count supports of itemsets on the trie;

4> compute interval large itemsets for the interval scanned;

(5) generate new candidate itemsets from these interval large itemsets;,

(6 petform upper-bound pruning on these new candidates;

7 insert the remaining candidates in the trie:

(8> remove globally small itemsets found on the tries

(9) }

()

The program fragment will be executed by each processor i on it partition Dy, 1<lisin. We have modified
the start up condition of APM. A master processor is assigned to compute L, from the private counter arrays
which have stored the local support counts of all size-1 items for different partitions. Then C;is generated, and
the master processor will build a shared trie containing the itemsets in L, and C;. Also the itemsets in C, would
undergo a global pruning before they are inserted in the trie. With this initialization, the trie would have a
smaller size to start with. This will introduce a single round of synchronization. However, this is a tradeoff

between memory usage and 1/0 cost.
4 Adaptive Optimization of APM

The performance of APM will also be influenced by the choice of the interval size and the data distribution
across the intervals. We proposed an optimization technique named Adaptive Interval Configuration to prepro-
cess the database partitions to derive a near optimal interval size and interval division. The optimization will be

performed independently on each partition by its own processor. Initially, a partition would be divided into a

http:// www. jos. org. cn

— 166 — Journal of Software #H4BFR 2000,11Q)

sequence of intervals. These intervals could be aligned with the pages on the storage system for performance
sake. The homogeneity of the itemset distributions in these intervals could be increased if we re-arrange the or-
der of the intervals and merge them into larger intervals. In the extreme case, the homogeneity will be guaran-
teed if all intervals are merged into one big interval. However, we also need to have a small interval size in order
to preserve the merit of generating candidates as early as possible.
4.1 Minimom merge

In order to adaptively create a near optimal interval configuration, we need to define a measurement on the
homogeneity of a configuration.

Definition 1. Given two sets of large itemsets L and L/, the distance between them is defined as

(LNL
Ly Ly

Example 1. Let two large itemsets L'={A,R,C,AB,BC) and 7= {A,.58,0D,AE.BD}. then the distance

between L' and L?is

dist(L', L) =1~

) | Fefa) B7 | 3 4
1 yE gy W TS - =2
dist(L' L= |~ 7 =

Definition 2. A division Du={I,,I.,....l.} of a database partition D, is a set of disjoint intervals dividing
D: such that, D;=U7.,I,. The evenness facter E;(I%,) of Do is defined by
Sdist(Li,L)
EfDy)=St———,
where L'is the locally large itemsets in I,+ 1<{j<<m, and L is the large itemsets in ;.

Evenness factar is a value in [0,1]. It equals zero if all the intervals have the same set of large itemsets.

Let Dw,={I,,1:4... .1, } be a division of a partition D,. A division Dv,={I,,14,....1,} of D is an equiv-
alent division of Du. if 1t is a re-ordering of the intervals in Du,.

Definition 3. Given a division Do, = (F,,1;,... ,1,} of a partition 71, a division Do ={Foysduae. .. oFu} of
Diis a k-merge of Du,, if I=[p/k], and there exists an equivalent division Duy={I.;,].3s... »1,,} of Do, such
that Lo= Ul 0 FQQsGl— 1) T = Ui a L

A #-merge of a division is the shuffling and merging of the intervals in a division such that each resulted in-
tervel contains k intervals from the original division. Note that the last inverval Iml in the -merge may contain
more than £ intervals.

Example 2. Let Dv,={{;.fy.... fo] be a division of a partition I, then Dwv=11,1.1;4... 85}, where
Li=rULUL, I=LULUL, and L;=1;UI,UI,Ul,, is a 3-merge of Du,

We want to merge the intervals of a division as less as possible, so that the interval size can be as small as
passible., Therelore, we define the minimum merge.

Definition 4. Given a division Dv,={l1+J;.. .. +1,} of a partition I, and an evenness factor threshold §€
(0,1), a k-merge D, of Dv. is a minimurm merge if E,{Dp,.) <& and for all k~merges D of Dv,y Er(Duv)<C8,
Rk

For a given interval division, it is computationally very costly to compute the minimum merge because of
the combinatorial effect of all the possible re-orderings. We have developed a technique based on clustering to
compute efficiently a sub-optimal solution to this problem.

4.2 AIC (adaptive interval configuration)

We propose a strategy called AIC (adaptive interval configuration) to compute approximate minimum &-

merges for each partition to enhance the performance of APM. AIC has twe goals: the first one is to derive a

more homogeneous itemset distribution over the intervals; the second one is to adaptively derive a proper

© HIEERES AT hip:/ www. jos. org. cn

FA FHEBKHEE A LB TR P AR — 167 —

interval size.

Initially, each database partition is divided into a number of small intervals, e, g. . 1024 equal size interva
Is. In the initialization phase of APM, while the partitions are scanned to compute L, and C;, (see section 3. 4),
we can compute all support counts for all size-1 itemsets in every interval.

Suppose there are m items, associated with each interval [in a partition. There is a length-m interval vector
{01s02s-+« +¥,) in which z,, 155i{€m, equals the support count of item 7 in I. These vectors can be viewed as
points in an m-dimensional space. The Euclidean distance between them is a measurement of the difference of
the itemset distributions among the intervals. Note that when we measure the evenness factor of a division, it is

defined on large itemsets of ail sizes. However, it is too rostly 1o compute large itemsets of all sizes in order to

find a good merge for a division. Instead, we use the information on the size-1 large itemsets which is much
more efficient 1o compute. Furthermore, size-1 large itemsets are a good ap- O .
proximation of the large itemsets of larger size, because il an itemset is large,

then all size-1 itemsets contained in the ilemset muost also be large, We use

the Euclidean distance between the interval vectors to generate clusters

. : L .

among the intervals (Fig. 4). Any good clustering algorithm can be used for Fig 4 (i:]us‘tering of the

this purpose. In our implementation, wc usc the A-mcans clustering intervals vectors
algorithm!™),
4.3 Reordering and merging intervals by clusters

Let D be a division of a partition D:, and G, Gzs ... » G be the & clusters generated from the interval vec-
tors. The clusters are arranged in a decreasing order by their sizes, We generate a cluster-even re-ordering of
the intervals of D, by picking intervals alternatively from the clusters according to the decreasing order of the
clusters. The intervals will first be selected randomly from G, and then from G,, centinuously until G, one
from each cluster. After that, the selection will start from the first cluster again until all clusters run out. A #-
merge is then performed on the re-ordered division to create a new division with larger interval size.

Because one sample interval is chosen from each cluster to perfarm the merge, the new intervals are more
similar with each other than before the merge. Hence, the homogeneity of the new division would be increased.
We modify the definition of the evenness factor defined in Section 4.1 to cover only size-1 itemsets in order to

determine whether a merge has enough homogeneity. Therefore, if D.={J, . J;.... ...} is a division on a parti-

tion [); . we modify

D dist(L L)

e
Ef(Dy)= m ’

where [is the size-1 interval large itemsets in [;, 1{j%{m, and L, is the set of size-1 large itemsets in D
4.4 Termination criteria of AIC

After re-ordering and merging have been performed, the evenness factor of the resulted division is com-
puted. If the factor is less than a predefined threshold &, then AIC terminates and returns the division to APM;
otherwise, a new round of clustering, re-ordering and merging will be performed until one of the following three
cpnditions becomes true;

(1) the evenness factor of the resulted division is less than the threshold &;

(2} the rate of change of the evenness factor is less than a threshold;

(3) the number of resulted intervals is too small and is below a threshold.

The first condition has been discussed. If Ef: and Ef, are the evenness factors of two successive rounds in

AIC, the rate of change of the evenness fzctor is defined as

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— 168 — Journal of Software M HH¥E 2000,11(2)

AEf= iEﬁP_I_f,Ef i]
A small rate of change indicates that further re-ordering and merging would not improve much on the factor.
Therefore, the preprocessing should terminate and the last merged division is returned to APM. The third con-
dition is to control the number of intervals in the division. If it is below a predefined threshold. the preprocess-
ing should also stop, and let APM to start its task. The main steps of the preprocessing technique AIC is pre-
sented as

/ # Each processor divides its partition into a number of intervals,, computes size — 1 interval large itemsets

for each interval and executes the following program in parallel * /

(1) Compute interval vectors for all intervals in its partition;

(2) Perform k-clustering on the interval vectors;

(3) Perform re-ordering and k-merging on the intervals with respect to the clusters to generate & new divi-

sion Dv with p intervals;

(4) Compute the evenness factor Ef (D) ;

(5) If Ef (Dw) <& then return the division Dwv;

(6) If the rate of change of Ef([>v) is less than a predefined threshold, then return the division Dw;

(7> If pis less than a predefined threshold then return the division Du;

(8) go to step (1).
4.5 APM with adaptive interval configuration (APM-AIC)

The enhancement of APM with AIC is called the APM-AIC algorithm whose framework is illustrated in
Fig. 5.

Counting Counting | Counting The difference between APM and APM-AIC is mainly the

size-] items] |size-] items| .- |size-] items preprocessing to generate adaptively the k-merge divisions for

+ + B{E the partitions. In the first scan in APM-AIC, besides computing

L, and C;, all support counts of the size-1 itemsets in each inter-

Get L, generatecz and build the 1rie |

val are stored. AIC takes these interval vectors to generate k-

merge divisions for each partition. These merges in fact would

Dynar_mc Dynar_mc Dynamic

counting counting counting | give a proper interval size to each partition, Note that the re-or-

Process 1 Process 2 Process n dering and merging of intervals are done logically, no physical
Fig. 5 Framework of APM-AIC movement of the intervals is required. The only change is that

the access of the intervals will follow the orders in the merged division. After the optimization. the interval divi-
sions are passed to the main loop of APM described in Fig. 4, and it will access the intervals according to the or-
ders in the divisions.

Our performance studies show that the optimization introduced by the adaptive interval configuration has
brought significant performance improvement to APM. This technique will be useful for algorithm which uses
local information to speed up the computation of large itemsets. An example of such algorithm is the PARTI-
TION algorithm!™,

5 Performance Studies

We have carried out extensive performance studies on an 8-node SGI Power Challenge shared-memory mul-
tiprocessor parallel machine. Each node in the machine is an MIPS R10000 processor, and it has a main memory
of 512MB. All processors run IRIX 6. 2.

5. 1 Synthetic database generation
We followed the methodology proposed in Ref. [2] to develop synthetic database to study the performance

EBKAIITIN httpi/ www. jos. org. en

AR F EENE MR A AR A AR GHER — 16% —

of the algorithms. Table 1 is a list of the parameters used in the synthetic databases. The database is generated
partition by partition. The result database is achieved by combining all partitions. The parameter n in Table 1 is
the number of partitions generated.

Tabie 1 Synthetic database parameters

| D] number of transactions in each partition

1T average size of the transactinns

|1 average size of the maximal pctentially large itemsets
LA number of maximal potentially large itemsets

N number of items

n number of partitions

5.2 Relative performance

We have implemented APM, APM-AIC in our studies. Ir addition, we have also implemented CD on the
8GI for comparison purpase. The version of CD in cur implementation is a variant of the synchronous version of
CD on the shared-memory model. To make CD more efficient, a shared hash tree is created in the memory. Ev-
ery processor has a private counter array to record support counts of the candidates in each iteration. At the end
of each iteration, suppart counts are copied from these arrays on to the hash tree, and o master processor com-
putes the large itemsets and creates the candidates for the next iteration. This process is repeated until no new
candidate is created.

Five databases with different atiributes have been generated, and their attribute values are summarized in
Table 2. The name of the database is in the form of Dx. Ty. Iz, where x is the number of transactions in each
partition, v is the average size of the transactions, z is the average size of the itemsets. The number of parti-
tions is 8, i.e. , n—8, We also have set N=1090, L=1000, and correlation level to 0. 573,

Table 2 Database properties

Name 17T 74| Partition Size
D1G24{K. T5. i2 3 2z 28M8B
D512K. T8.12 2 2 20MB
Ds12K. T10. 12 10 2 24MB
D512K. T10. I4 10 4 24MB
D256K. T20. [4 20 4 22MB

We ran CD, APM and APM-AIC multiple times on the five databases described in Table 2. The minimum

support threshold used in the first four databases is 1%, and is 23/ in the last databasc. The average response
time of CDy APM and APM-AIC in these executions is shown in Fig. 6. Both APM and APM AIC are faster
than CD for all the five databases, and APM AIC is significantly hetter than both APM and CD. In all the ex-

periments s it is found thet APM-AIC is at least 3 times faster than CD.
Relative performarce (n=8)

The performance improvements Response tme(sec)
of APM and APM-AIC are achieved 2500

through the following twa sources ,

(1) saving In computation from the
reduction on candidate itemsets; (2)

saving in 1/0) cost from the reduction 1310 E——

in the number of passes in database 0 : . :
Mo24K T5.12 D512K. T8. 12 D512K T10.12 D512K. T10. 14 D256K T20. 14

SCANRINE. Databases

Figure 7 shows the ratio of the Fig. 6 Relative performance

© hIERRRSA

FWFFEHT http:/ www. jos. org. cn

— 170 — Journal of Software #44F¥H 20006,11(2)

total candidate itemsets generated by the three algorithms. In most of the cases, the number of candidates in
APM-AIC is at least 60% less than that of CD. The staBility of the reduction ratic achieved in APM-AIC con-
firms that the adaptive interval configuration technigue is very effective in creating a more homogeneous data
distribution among the intervals. Figure 8 provides the evidence that the adaprtive interval configurarion can re-

duce the system [/0 cost significantly.

Ratio of number))
of candidate sets Total candidate itemsets(n=8)

1.2

14

£} APMEAIC

D1024K T5. 12 D512K. T8. 12 D512K. T10. 12 D512K. T10, 14 DgseK T20. 14
Databases
Fig. 7 Total candidate itemsets

Rall of Mebes Database scan passes(#=8)

10

aceezent 0
——CD

D1024K. Ts. 12 DEF2K T8. 12 D512K, T10. 12 D512K. T10. 14 D256K. T20. 14
Databases
Fig. 8 Saving in database scan
We have also studied the effect of the clustering techniques on the performance of APM-AIC. In A-means

clustering, we compare three cases: k=2, #=4 and a sliding down &. In the sliding down case, we set £ to §
and gradually decrease its value to 4 and then 2 in the later iterations. The sliding down technique starts with a
large % which would create more clusters and hence possibly a more homogeneous division than the case of a
smaller 2. Decreasing the value of £ gradually could prevent the interval size to increase too fast in the later iter-
ations. However, the result in Fig. 9 shows that none of these three is better than the others in all cases. This
leads us to adopt & small fixed value, i.e. k=4, in our experiments, It should be noted that the cost for the op-
timization is quite small, e.g. , only taking 1% of the total response time.

Response tinme (sec) Elfect of different clustering parameters From the experiments presented
1500 .

in this section, it can be concluded

that the APM is more efficient than

the synchronous CD. APM has less

| 3 5 : did. kes | '

D1024K T5. 12 D512K T8. 12 D512K. TI0. 12 DS12K TI0. 14 DEsoK Too, 14 Conidates and makes less passes in
Databases scanning, and has a much faster

Fig. § Effect of different £ values in the clustering in APM-AIC overall response time than CD. Fur-
thermore, the enhanced APM-AIC gives APM a more stable behavior and reduces its sensitivity to the data dis

tribution. And it is faster than AT'M even though it incurs some overhead in the preprocessing of the partitions.

FESATFT http:/ www, jos. org. cn

B F e PR A E A AR ATH R T 49 R o

£.3 Parallel performance

In order to study the merit of the parallelism in mining association rules in the shared memory model, we
compare the speedup performance of the three parallel algorithmis,

In the speedup experiment, we applied different numbers of processors on a fixed size database to study the
performance of the three algorithms. The test databuse is the database D512K. T8.12 which has a toral size of
160MB. We ran the three algorithms CDy APM and AFPM AIC on this database with 1. 2, 4 and 8 processors,
respectively. Figure 10 presents the speedup result which is the ratic between the response rime of processing

Relative speedup: without 1/} time— D512K T8.1

Speedup Relative speedup —D512K. T8. 1 Sacedvp
8 & 1deal : i
& APM P
¢ ‘EP.M-—A[C 4
2|
0 H
0 2 [8

Number 0f4 processors Number of processors
Fig. 10 Speedup
the darabase by one processor and the response time of processing it by more processors. In the first graph. the
1/0) time is included in the response time in the calculation of the speedup ratic. In the second graph, the I/0
time is exeluded from the calculation. In both cases, APM-AIC has s hetter speedup than APM. and APM is
better than CD. The speedup of APM and APM-AIC in the second graph is superlinear through cut the whole
range of different numbers of processars, which shows a very high parellelism. The superlinearity comes from
the increased pruning effect resulted from the larger number of partitions. On the contrary, in the first graph,
even though the speedup of bath APM and APM-AIC is better than the linear speedup when the number of pro-
cessurs is between 1 to 4, it starts to degrade when there are more processors (n324). Comparing the results in
the two graphs, it is clear that the degradation in the speedup is due to the in¢reased contention when more pro-
cessors shaze the 1/0 channel. This confirms our analysis in the beginning that I/0 contention is an important
negative factor for the performance af a parallel algorithm on a shared-memory system. The resulis in the first
graph also show that CD suffers more from the contention than the other two algorithms kbecause of its syn-

chronous 1;0.

6 Conclusion

Synchronous parallel algorithms are not suitable {or mining association rules on a shared-memory multi-
processor parallel machine because of the /0 contention problem. We have proposed an adaptive asynchronous
algorithm APM to solve this problem. All processors in APM generate candidates and compute their supports
independently and asynchronously. The asynchronous access of the [/ channel reduces significantly the 170
cost.

Our second contribution is the proposal of the adaptive interval configuration technigue. [t defines an access
order to the transactions which increases the homogeneity of the distribution of the large itemsets. By using this
adaptive technique, the database scanning in APM is reduced to an amount much less than that in the conven-
tional level-wise approach. This further reduces the 1/0 cost. The performance studies on an SG1 Fower Chal-
lenge machine have confirmed our observation that the asynchronous approach is much niore efficient than the

synchronous approach. The studies lso show that APM has good parallelism.

SCAHIFICIT hieped/ www. jos. org. cn

— 172 — Journal of Software A4 ¥IR 2000,11¢2)

References

1 Agrawal R, Imiclinski T Swami A. Mining association rules between sets of items in large databases. In; Proceedings of
1993 ACM-SIGMOD International Conference on Management of Data. Washington, D.C., 1993. 207~216
2 Agrawal R, Srikant R. Fast algorithms for mining association rules. In, Proceedings of the 20th VLDB Conference. Santi-
ago, Chile, 1994. 487~459
3 Brin 3, Motwani R, Ullman J ez @f. Dynamic itemset counting and implication rules for market basket data. In: Proceed-
ings of 1497 ACM-SIGMOD International Conference on Management of Data. Tucson, Arizona, 10097, 255~~264
4 Cheung D W, Han], Ng V ef al. Maintenance of discovered association rules in large databases: an incremental updating
technique. In; Proceedings of the 12th International Conference on Data Engineering. New Orleans, Louisiana, 1896. 104
~114
5 HanJ, Fu Y. Discovery of multiple-level association rules from large databases. In; Proceedings of the 21st VLDB Con-
ference. Zurich, Switzerland, 1995, 420~431
6 Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules. In. Proceedings of 1585
ACM-SIGMOD International Conference on Management of Data. San Jose, CA, 1995. 175~186
7 3avasere A, Omiecinski E, Navathe 5. An efficient algorithm for mining association rules in large databases. In: Proceed-
ings of the 21st VLDR Conference. Zurich, Switzerland, 1995, 432~444
8 Toivenen H. Sampling large databases for mining association rules. In: Procesdings of the 22nd VLDB Conference. Bom-
bay, India, 1996. (34~145
9 Agrawal R, Shafer } C. Parallel mining of association rules design, implementation and experience. Special Issue on Data
Mining , IEEE Transactions on Knowledge and Data Engineering, 1996,8(6):962~96%
10 Cheung D W, NgV T, Fu A W et al. Efficient mining of association rules in distributed databases. Special Tssue on Data
Mining, IEEE Transactions on Knowledge and Data Engineering, 1996,8(6);911~922
11 Han E, Karypis G, Kumar V. Scalable parallel data mining for association rules. In. Proceedings of 1957 ACM-SIGMOD
International Conference on Management of Data. Tucson, Arizona, 1997. 277~288
12 Zaki M J. Ogihara M, Parthasarathy S er al. Parallel data mining for association rules on shared-memory multi proces-
sors. In: Supercomputing’96, Pittsburg, PA, 1996, 17~22
13 MacQueen J B. Some methods for classification and analysis of multivariate observations, In; Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability. 1967, 281~297

B iE hy X [B)EC & 75 X BRI AT R B R a0 1E A
AR KEED R

ERRKERHNEE JE 100084)
FHBRZITRNEERE B

BE AGHAREABHANGAENELETRRGEANE BT kA S R EL BBRBEEANRTE—K
By AR FEIdTAINAS A EATNARRARERT RO, SHELEEBTHEIHIO0
B RSF EARETERTINSSLBN L RIBEKAN R T Mk APM. £ APM ¥, A £ Bt B #
AHEREIRFLELEERFTEEIHA R APM T ESBARE AR B EXFTENEHE P, 4
ERG T MR APM SR A B EHEORBESTFRESFLAT AL X T EAT APM S EHYE
FVERAT Apriori 4 #4788 % Count Distribution # i%. # SGI Power Challenge SMP # #F4L L, 8 47 T 62
SATLVERAVUFRRGR T Ak APM A H S 4765 H 7T 5 R4,

KEE AEBRN HBRE AGRB,AEIAASARE. S HNREE,

FHESES TP311

EBKAIITIN httpi/ www. jos. org. en

