
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.20, No.6, June 2009, pp.1499−1510 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2009.00564 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

基于数据包络分析的软件任务性能基准评价
∗

阮 利1,2,4+, 王永吉1,3， 王 青1， 曾海涛1,2

1(中国科学院 软件研究所 互联网软件技术实验室,北京 100190)
2(中国科学院 研究生院,北京 100049)
3(中国科学院 软件研究所 计算机科学国家重点实验室,北京 100190)
4(北京航空航天大学 计算机学院,北京 100191)

Benchmarking Software Task Performance Based on Data Envelopment Analysis

RUAN Li1,2,4+, WANG Yong-Ji1,3, WANG Qing1, ZENG Hai-Tao1,2

1(Laboratory for Internet Software Technologies, Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China)
2(Graduate University, The Chinese Academy of Sciences, Beijing 100049, China)
3(State Key Laboratory of Computer Science, Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China)
4(School of Computer Science and Engineering, Beihang University, Beijing 100191, China）

+ Corresponding author: E-mail: ruanli@itechs.iscas.ac.cn, http://itechs.iscas.ac.cn

Ruan L, Wang YJ, Wang Q, Zeng HT. Benchmarking software task performance based on data envelopment
analysis. Journal of Software, 2009,20(6):1499−1510. http://www.jos.org.cn/1000-9825/564.htm

Abstract: In this paper, a software task performance benchmarking method based on Data Envelopment Analysis
(DEA)-TaskBeD is proposed. TaskBeD’s fundamental benchmarking model and algorithms (transforming
undesirable outputs, identifying high performance tasks, establishing reference sets and performing sensitivity
analysis) are introduced. Experimental results show that the proposed TaskBeD method achieves a good result of
dealing with multivariate and VRS.
Key words: software project; software process; task performance benchmarking; data envelopment analysis

摘 要: 提出了一种基于数据包络分析的软件任务性能基准评价新方法——TaskBeD.介绍了 TaskBeD 的任务基

准评价模型和核心算法(挖掘高性能的软件任务,建立参考任务集和结果的敏感度分析).实验结果显示,TaskBeD 能

够高效处理多变元和可变规模收益任务数据.
关键词: 软件项目;软件过程;任务性能基准评价;数据包络分析
中图法分类号: TP311 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60573082, 60473060, 60673121 (国家自然科学基

金); the National High-Tech Research and Development Plan of China under Grant Nos.2006AA01Z185, 2005BA113A01,

2006AA01Z182, 2007AA010303, 2007AA01A127, 2007AA01Z186 (国家高技术研究发展计划(863))
Received 2007-12-28; Accepted 2008-06-11

1500 Journal of Software 软件学报 Vol.20, No.6, June 2009

1 Introduction

Software (development) task is an atomic unit of project and a key performance indicator for developers. With the
wide application of CMMI/TSP/PSP[1,2], fine-grained software task benchmarking, which is a critical step in
software task management, gains increasing research focus in software process improvement field . Benchmarking
in this context is the process of determining which task is the very best, which task sets the standard, and what that
standard is from software task repositories.

[2]

For quantitative software task management, it is really a difficult issue to correctly benchmark software tasks.
Because tasks tend to have multivariate inputs (effort, etc.) and outputs (program size, defects, document, etc.), and
the relationship between those inputs and outputs is usually nonlinear[3,4], the major challenge for benchmarking is
how to effectively cope with multivariate and variable return to scale (VRS)[3].

In this paper, we propose a novel software task benchmarking method based on Data Envelopment Analysis
(DEA)-TaskBeD, which can deal with the multivariate, VRS and undesirable outputs problems. TaskBeD can be
regarded as a further extension of the work in Refs.[3,5] and our previous work in Ref.[6] by scaling the DEA-based
software project benchmarking down to fine-grained software tasks and introducing mechanisms of transforming
undesirable outputs and sensitivity analysis.

This paper is organized as follows. Section 2 presents the related work. Section 3 introduces TaskBeD’s CCR
and BCC task benchmarking models. Section 4 presents TaskBeD’s fundamental benchmarking algorithms of
transforming undesirable outputs, identifying high performance tasks, establishing reference sets and sensitivity
analysis. To verify task benchmarking models and algorithms, an experiment on real task application datasets is
demonstrated and its results are analyzed in Section 5. Section 6 introduces a sensitivity analysis process to
guarantee the effectiveness of experiments. Section 7 summarizes our conclusions and points out the future work.

2 Related Work

Software process standards CMMI/TSP/PSP[1,2] classify software process management into three levels:
organization level, team level and individual level. Moreover, according to CMMI that focuses on the most macro
view of software process, software project is the key performance benchmarking components to measure the
organizational performance. According to PSP that focuses on the most micro view of software process, software
task is the key performance benchmarking components to measure personal performance. To date, in software
process improvement field, most current benchmarking research mainly focuses on projects[3,4,7−9]. Using COTS
projects as an example, it is analyzed by Ref.[7] that “there are several groups interested in intraorganizational
productivity benchmarking of software projects. Customers of COTS software projects within the Enterprise
Resource Planning (ERP) market (e.g. products like SAP and Oracle) demand that productivity benchmarks are
included in proposals. Therefore, COTS project bidders must provide benchmarks to stay competitive.
Organizations use benchmarks internally to evaluate projects. Project managers and methodologists need
benchmarks to identify best practice processes and technologies. The need is clear”.

On the other hand, due to the research of PSP, the recent trend of software process improvement is “scaled
down” to the level of individual developers. Compared with the benefit of benchmarking software projects on macro
process management when applying CMMI, task performance benchmarking is vital for any developer seeking to
continuously improve his task management practices and identify competitive strengths and weaknesses when
applying PSP. However, although there have been deep research [3,4,7−9] on benchmarking macro software projects,
the benchmarking of fine-grained software tasks, which is one key step to achieving quantitative micro personal

阮利 等:基于数据包络分析的软件任务性能基准评价 1501

software process management and realizing total (including both macro level and micro level) process management,
is ignored. Moreover, existing task management literature has proposed few task benchmarking methods that
explicitly consider their multivariate and VRS constraints. Commonly applied performance evaluation methods,
such as earned value management (EVM)[10], provide organizations with a method of systematically comparing
actual performance to task goals. It does not take into account of the task’s uniqueness when performing cross-task
evaluation[8]. Statistical methods[11] are proposed to compare the task performance with some theoretical optimal
ones (e.g. theoretical baselines)[4]. However, as Ref.[3] recently reports, in software engineering, it seems more
sensible to compare the performance with the best practice rather than with some theoretical optimal (and probably
non-attainable) performance. Furthermore, multivariate regression[11] is unsuitable for identifying the best tasks
because it tends to evaluate tasks relative to the average rather than to the best[3]. Moreover, software tasks data are
heteroscedastic. We could therefore wrongly tend to identify mainly the large tasks as the most productive without
taking into account of the VRS constraints of tasks[3]. In a word, to the best of our knowledge, few research results
on benchmarking software tasks under multivariate and VRS constraints have been publicly reported.

Data Envelopment Analysis (DEA) developed by Charnes and Cooper in 1978 is a linear non-parametric
programming-based performance evaluation technology[4,12] and has gained successful benchmarking applications
in financial, industrial process, etc. Recently, DEA is gaining increasing benchmarking research interests in software
process field[3,5,8] after Stensrud, et al. first introduced it into software project benchmarking in 1999[3,4]. DEA gains
interests mainly because it provides a powerful unique advantage of handling task uniqueness[8], multivariate and
VRS[3]. Ref.[3] especially points out that “DEA is the only method complying with the two requirements
(multivariate inputs/outputs and VRS) that we consider crucial to perform correct performance assessment in
software engineering”. DEA is appealing to software practitioners because it uses the best practice frontier as a
benchmark rather than some theoretical baseline (and probably non-attainable)[3,5]. Although Refs.[3−5] introduced
DEA into project and personal software process evaluation, they do not take task’s fine-grained uniqueness into
account. Moreover, existing DEA-based benchmarking methods in software process field[3−5] usually assume that
the output of every task is an ideal output, i.e., there are no undesirable output in the output set. Thus, they[3,5] do
not provide effective mechanisms to transform undesirable outputs that should not be ignored in practical
applications. This paper extends Refs.[3−6] by scaling the DEA-based software project benchmarking down to
micro software tasks and introducing mechanisms of transforming undesirable outputs and sensitivity analysis.

3 TaskBeD’s Task Benchmarking Model Description

In this section, we first introduce TaskBeD’s benchmarking model. Let n denote the number of software tasks
to be benchmarked. Each task has m inputs (reflect the “resource” consumption in the software process, e.g. time)
and s outputs (reflect the performance after consuming “resources”, e.g. software products).

Definition 1 (A Task Set (T)). A task set is defined as T={t1,…,tj,...,tn}. The basic requirement is that the n
tasks are homogeneous which can be efficiently evaluated on their relative performance.
Definition 2 (A Task (tj)). Each task tj is defined as a tuple t j=(Xj,Yj) where Xj denotes the m inputs of tj and Yj

denotes the s outputs of tj.
Definition 3 (A Task Input (Xj)). Each task tj’s input is defined as Xj=(x1j,x2j,...,xij,...,xmj) where xij denotes the

amount of input i utilized by tj and xij≥0.
Definition 4 (A Task Output (Yj)). The task tj’s output is defined as Yj=(y1j,y2j,...,yrj,…,ysj) where yrj denotes the

amount of output r produced by tj and yrj≥0.
The basic understanding of inputs and outputs of software tasks is that the less inputs the better and the larger

1502 Journal of Software 软件学报 Vol.20, No.6, June 2009

outputs the better in the view of performance. Based on the two classical DEA models (the CCR model by Charnes,
Cooper and Rhodes[13] and the BCC model by Banker, Charnes and Cooper[14]), we establish TaskBeD’s task
performance benchmarking models (see Table 1) for any task tu(tu∈T). Let the optimal value of task benchmarking
models be θu , { u

jλ }(j∈[1,n]), { u
is+ }(i∈[1,m]), { u

ks− }(k∈[1,s]) for each task t u(t u ∈T). θu represents the

nonnegative performance score of the task tu. θu∈[0,1]. u
is+ represents nonnegative slack (i.e., excess resources)

associated with the inputs u
iX , and u

ks− represents nonnegative slack (i.e., additional output) associated with the

outputs u
kY . u

ks− is the additional amount of the kth output that is expected, and u
is+ is the amount by which the ith

input has to be reduced, if the tu was to become efficient. ε(ε>0) represents a non-Archimedean constant and is
smaller than any positive valued real number.

Table 1 TaskBeD—Task benchmarking models
(1) CCR model (2) BCC model

minθ −ε(i kS S+ −+∑ ∑)

s.t. θXu− ij jx λ∑ − is+ =0, i=1,...,m

ij jx λ∑ −Yu− ks− =0, k=1,...,s

θ∈[0,1]
λj≥0, j=1,…,n

is+ ≥0

ks− ≥0
u∈[1,n]

minθ −ε(i kS S+ −+∑ ∑)

s.t. θXu− ij jx λ∑ − is+ =0, i=1,...,m

ij jx λ∑ −Yu− ks− =0, k=1,...,s

jλ∑ =1

θ∈[0,1]
λj≥0, j=1,…,n

is+ ≥0

ks− ≥0
u∈[1,n]

The CCR task benchmarking model’s assumption is Constant Return to Scale (CRS) and the BCC model’s
assumption is Variable Return to Scale (VRS) (see Fig.1).

Line of code (LOC)/Function points (FP)

VRS (IRS) CRS VRS (DRS)

Effort

Fig.1 CRS and VRS models

CRS assumes a linear relationship between inputs Xu and outputs Yu
[3] that is consistent with the productivity

model p=y/x(p=productivity, x=effort, y=FP or SLOC). VRS assumes a nonlinear relationship between Xu and Yu
that is consistent with cost estimation models (like COCOMO) x=(1/p)yB (p=productivity, x=effort, y=FP or SLOC,
B>1). DRS (decreasing returns to scale) and IRS (increasing returns to scale) are two special cases of VRS. As CRS
indicates the linear relationship between Xu and Yu, IRS (DRS) indicates that an increase in one unit’s inputs Xu will
yield a greater (or less) proportionate increase of its outputs Yu.

4 TaskBeD’s Task Benchmarking Algorithms

Commonly applied benchmarking process[4,7] at least has the following key steps: Handling the undesirable
outputs to pre-handle the task data, identifying relatively high performance tasks to set up the task benchmark,

阮利 等:基于数据包络分析的软件任务性能基准评价 1503

establishing reference sets to determine the task performance improvement gaps and performing sensitivity analysis
to guarantee the effectiveness. In this section, we introduce four algorithms in TaskBeD for the four steps.

4.1 Undesirable outputs transforming mechanism

First, we give the following definitions.
Definition 5 (The Task’s Undesirable Input). For the ith input xij∈Xj, if an increase in xij does not contribute to the

increase of any output yij∈Yj, xij is defined as an undesirable input to Yij.
Definition 6 (The Task’s Undesirable Output). For the rth output yrj∈Yj, if an increase in any input xrj does not

contribute to the increase of the output yrj, yrj is defined as an undesirable output to xrj. e.g., defects can be regarded
as the task’s undesirable outputs when size is the input because developers usually do not desire an increase in size
contributes to an increase in defects.

In TaskBeD, we employ a [TRβ][15] transformation method (see Algorithm 1) to transform the undesirable
outputs. In [TRβ] transformation method, the undesirable output (yrj) is subtracted from a significantly large scalar
(βr)(r=1,...,s), such that all resulting (transformed) values (yrj=βr−yrj) are positive and increasing values are
desirable. TaskBeD’s undesirable outputs transformation algorithm is presented in Algorithm 1. The rule to choose
βr is that βr is generally a value just slightly larger than the maximum value of the undesirable output in the data set,
since choosing a βr value that is much greater than this maximum value can distort model results.

Algorithm 1. Transforming undesirable outputs.
Input: The Task Output (Yj)(j=1,...,n);
Output: The transformed Output.
1 for r=1 to s do

2 if (yr1,...,yrn)∈Yj and each yrj∈(yr1,...,yrn) is an undesirable output then
3 /*select the maximum value max

ry */

4 =max(max
ry yr1,...,yrn);

5 /*get a random value ξr∈(0, /6)max
ry */

6 ξr=randomize(0, /6); max
ry

7 /*get a βr which is slightly larger than by ξmax
ry r*/

8 βr= +ξmax
ry r;

9 for each yrj∈{yr1,...,yrn} do
10 /*subtract each undesirable output from βr*/

11 yrj=βr−yrj;
12 end for
13 end if
14 end for

4.2 Identifying the relatively high performance tasks

After the undesirable inputs/outputs have been pre-handled, the second step is to identify relatively high
performance tasks. Only after the tasks of relatively high performance have been identified, can developers/project
managers know which tasks perform well and should be learned best practices from. We now introduce TaskBeD’s
algorithm of identifying high performance tasks (see Algorithm 2). First, we give the following definitions.

Algorithm 2. Identifying relatively high performance tasks.
Input: The task set T;

1504 Journal of Software 软件学报 Vol.20, No.6, June 2009

Output: The task set with tasks of relatively high performance Ω.
1 /*Initialize Ω*/
2 Ω={};
3 /*Initialize ε*/
4 ε=0.00001;
5 for all tu∈T(u∈[1,n]) do

6 /*calculate the performance score of tu under T and TaskBeD’s task benchmarking models*/
7 θu=caculatePerformanceScore(tu,T);

8 if (θu=1) then
9 /*If tu is of high performance then add tu to Ω*/
10 Ω=Ω∪{tu};

11 end if
12 end for
13 return Ω
Definition 7. If the optimal value of task benchmarking models θu=1, we define tu to be of relatively high

performance, or relatively efficient in short.
Here, the word relatively means that the performance of tu is a comparative measure based on the task set T[16].
Definition 8. If the optimal value θu<1, we define tu to be of relatively low performance.
That is, the task’s outputs (see Definition 4) could be increased without increasing inputs (see Definition 3) or

conversely inputs could be decreased without decreasing outputs[16].
Definition 9. The task set with tasks of relative high performance Ω={Φ1,...,Φi,...,Φm}. Φi∈T and Ω⊂T. The

optimal value θi of each Φi satisfies that θi=1.
Definition 10. The task set with tasks of relatively low performance is defined as Ψ=T−Ω.
In Algorithm 2, we use the performance score θu to distinguish between relatively high performance tasks and

relatively low performance tasks, and establish a task set of relatively high performance tasks. After the relatively
high performance tasks (Ω) have been identified using Algorithm 2, T will thus be clearly classified into relatively
high performance (see Definition 7) and low performance ones (see Definition 8).

4.3 Establishing the reference sets

In practical applications, each identified relatively efficient task Φi(Φi∈Ω) is typical and usually of different
improvement reference value for the inefficient one. Therefore, we must establish different reference sets for each
relatively inefficient task. In this section, we present an algorithm of establishing reference sets for tasks of
relatively low performance in TaskBeD (see Algorithm 3). First, we give the following definitions:

Definition 11. A task tu(tu∈T)’s reference set is defined as RSu={tj:θu=1 and u
jλ ≠0, j=1,...,n}.

Algorithm 3. Establishing a task’s reference set.
Input: A task tu and T={t1,t2,...,tn};
Output: The tu’s reference set RSu.
1 RSu={};
2 ε=0.00001;
3 for (j=1 to n) do

4 /*calculate the u
jλ under T and task benchmarking models*/

5 u
jλ =calculateLamda(tu,T);

阮利 等:基于数据包络分析的软件任务性能基准评价 1505

6 if (u
jλ ≠0) then

7 RSu=RSu∪{tj};
8 end if

9 end for
10 return RSu

It should be noted that each task tj(tj∈RSu) is efficient, i.e., θu=1 and tj∈Ω (see Definition 7). For convenience,
we call each efficient task tj a peer of the task tu. The corresponding u

jλ (calculated from Table 1) of the peer tj is

thus called peer weight. The peer weight u
jλ indicates the improvement reference importance/value of the peer tj to

tu. Via the reference set (RSu), peers {tj:tj∈RSu} and the peer weights { u
jλ } of tj derived from Algorithm 3,

developers can determine which peer {tj} is of the biggest improvement reference value to the task tu.
4.4 Sensitivity analysis mechanism

In this section, we present the sensitivity analysis mechanism (see Algorithm 4). As the kernel of TaskBeD is
DEA which identifies best practice rather than the average or say the best 10 percent, it makes TaskBeD sensitive to
extreme observations. It is therefore necessary to design a sensitivity analysis mechanism of outliers. There are
several techniques (e.g., superefficiency and analysis of reference units) each of which have its strengths and
limitations depending on the purpose of the DEA analysis[3]. In task performance benchmarking field, the most
important purpose is twofold: first to identify best practice tasks as well as the reference tasks for individual tasks,
and second, to determine the average efficiency of the software tasks to quantify the overall potential for
performance improvement. For this, the simplest and probably most reasonable sensitivity analysis mechanism is to
remove all the frontier tasks one by one and study the effect on the mean efficiency[3].

Algorithm 4. Sensitivity analysis.
Input: The task set T={t1,t2,...,tn};
Output: Sensitivity.
1 for all tu such that tu∈T do
2 θu=caculatePerformanceScore(tu,T);
3 end for
4 /*calculate T’s average performance scores*/

5 avgθ=average(θ 1 ,...,θ n);
6 /*initialize the number of outliers to be 0*/
7 coutForOutlier=0;
8 for all Φ such that Φi∈Ω do
9 /*remove a high performance task from T*/

10 rev
iT =remove(Φi,T);

11 for all tk such that tk∈
rev

iT do

12 /*calculate performance score of tk in rev
iT */

13 rev
ikθ =caculatePerformanceScore(tk,); rev

iT

14 end for

15 /*calculate rev
iT ’s average performance score*/

16 iavgθ =average(1
rev
iθ ,..., (1)

rev
i nθ −);

17 if (|avgθ− iavgθ |>0.001) then

1506 Journal of Software 软件学报 Vol.20, No.6, June 2009

18 coutForOutlier++;
19 end if

20 end for
21 if coutForOutlier==0 then
22 return “the sensitivity is reasonable”.
23 else

24 return “the sensitivity is unreasonable”.
25 end if

5 Experiments

We have implemented our ideas about TaskBeD in our tool TaskBench which is a key task management
component of software process management toolkit and was previously reported in Ref.[5,6] for the benchmarking
of software task. TaskBench has implemented key benchmarking functions about how to identify which task is the
very best, which task sets the standard, and what that standard is from software task repositories. TaskBench
supports a full DEA-based undesirable outputs transformation, the relatively high performance tasks identification,
the reference sets establishment and sensitivity analysis. Techniques for the design of software task data structure,
the establishment of performance benchmarking metrics, the mining, evaluation and selection of the task set T from
task repositories have been previously reported in Ref.[6]. In this experiment, based on our previous work in
Ref.[6], we further present experimental results of TaskBeD’s mechanisms of transforming undesirable outputs,
identifying high performance tasks, establishing reference sets and sensitivity analysis on a task set mined from the
software process management tool (SoftPM) in Institute of Software, Chinese Academy of Sciences (ISCAS). Based
on our previous work in Refs.[5,6], three typical task outputs (Y={Y1i,Y2i,Y3i}) and one typical input (X={X1i}) (see
Table 2) are mined out from softPM as the software task performance benchmarking metrics. Based on the
established metrics, 30 completed software tasks are mined from the task repository, i.e., T={t1,t2,...,t30} (see Table
3). Each tj(j=1,...,30) is of the engineering type, implements the same software process management package and is
based on J2EE Web Applications, i.e. T is homogenous. The further detailed task data mining rules and process of T
have been previously defined and reported in our previous work[5,6]. As this experiment emphasizes more on the
TaskBeD’s models and algorithms, therefore we directly use T reported in Ref.[6]. Based on the metrics and task
data set mining rules and process in Ref.[5,6], TaskBeD also can further be applied to more metrics and the task set
of larger size. Experiments of more metrics and task set of larger size can be found in Ref.[17]. Therefore, we here
present our representative experiment on T as a demonstration of TaskBeD’s models and algorithms due to page
limits.

After T has been mined out, we next transform the undesirable outputs. By investigating on the metrics in
Table 2, Y2j (Program Defects) is identified as one undesirable output (see Definition 6) and requires to be
transformed. We thus apply TaskBeD’s undesirable outputs transforming algorithm to Y2j. The maximum Program
Defects is 12 defects. Therefore, 14, which is slightly larger than the maximum Program Defects (12) by 2, is
chosen as βj. Next, the Program Defects of each tj is subtracted from βj. After undesirable outputs are transformed,
T is prepared well for further benchmarking processing.

Table 2 Input and output evaluation metrics of tasks
Type Metric Meaning Unit Type Metric Meaning Unit

X1j Effort Actual effort of
the task

Person
hour Y2j Program defects Program defects

found in test phase Defects

Y1j Program size Program size of work products LOC Y3j Documents Documents for the task Pages

阮利 等:基于数据包络分析的软件任务性能基准评价 1507

Table 3 Task data set
tu Size Def Doc Effort tu Size Def Doc Effort tu Size Def Doc Effort
t1 1579 12 6 7.5 t11 725 5 5.5 5.5 t21 345 5 4 5.3
t2 1320 10 5 7 t12 718 6 6 6 t22 263 3 5 5.1
t3 1202 8 7 7.5 t13 700 4 3 5.4 t23 236 5 3 3
t4 1000 5 5 7 t14 685 9 5 5 t24 233 4 3 3.5
t5 980 9 2 6.5 t15 678 7 6.5 5.5 t25 220 2 4 3
t6 940 7 4 6 t16 620 3 7.5 6.5 t26 200 4 2.5 4
t7 824 6 5 6.5 t17 598 5 3 6.4 t27 178 3 1 3
t8 763 7 5 5 t18 568 3 5 5.5 t28 155 2 1.5 2
t9 744 5 5.5 6 t19 460 5 3 6.5 t29 144 2 1 1.5
t10 735 6 4 7 t20 458 4 2.5 6 t30 124 3 3 2

(size: Program size; def: Program defects; doc: Documents)

5.1 Identifying the relatively efficient tasks

We next apply Algorithm 2 to T to identify the relatively efficient tasks. The resulted relative performance
score θ u for each tu are shown in Table 4. In Table 2, we can see each task has multivariate inputs and outputs (one
input like Effort; three outputs like Program Size, Program Defects and Documents). Table 4 shows that θu for each
tu are obtained under the multivariate inputs/outputs (see Table 2). These results verify that TaskBeD can effectively
identify the relatively efficient tasks under multivariate inputs/outputs. Moreover, TaskBeD’s CCR task
benchmarking model only puts t1, t29 and t30 on the task performance frontier (see Definition 7). The BCC puts t1,
t3, t4, t15, t16, t18, t25, t29 and t30 on the task performance frontier. The notable difference between the results of CCR
and BCC lies in that t3, t4, t15, t16, t18 and t25 are positioned on the efficiency frontier in BCC while not recognized
as the relatively efficient tasks in CCR. This result reveals that TaskBeD’s BCC model has a better capability to
establish different performance benchmarks for tasks of different sizes. For example, in CCR model, only t1, t29 and
t30 can be identified as the task performance benchmarks. In BCC model, more fine-grained efficiency scores (t1, t3,
t4, t15, t16, t18, t25, t29, t30) can be identified and such fine-grained efficiencies enable developers to establish much
fine-grained performance benchmarks for tasks of different sizes. To make it clearer, let us use t14 as an example. In
BCC, we can benchmark t14 on t15. In CCR, we can only benchmark t14 on t1, t29 or t30. The size difference between
t14 and t15 is obviously much smaller than that of t14 between t1, t29 or t30. This result surely shows that TaskBeD’s
BCC model is more appropriate to evaluate software tasks with similar scale and ensures that relatively larger tasks
are compared with other relatively larger tasks, and relatively smaller tasks with relatively smaller tasks than CCR.
For example, one task benchmarking solution of T may be that {t1,t3,t4} is used as the performance benchmark for
relatively large tasks, {t15,t16,t18} for relatively middle-scale tasks and {t29,t30} for relatively small tasks under
Algorithm 2.

Table 4 Performance scores of tasks (ES: efficiency score)
 CCR BCC CCR BCC CCR BCC

tu Size ES ES tu Size ES ES tu Size ES ES
t1 1579 1.000 0 1.000 0 t11 725 0.904 6 0.971 7 t21 345 0.592 3 0.596 2
t2 1320 0.918 6 0.934 8 t12 718 0.872 7 0.917 2 t22 263 0.682 6 0.784 3
t3 1202 0.942 2 1.000 0 t13 700 0.732 3 0.933 2 t23 236 0.764 8 0.786 1
t4 1000 0.795 3 1.000 0 t14 685 0.918 2 0.924 7 t24 233 0.663 7 0.671 0
t5 980 0.756 1 0.768 5 t15 678 0.983 6 1.000 0 t25 220 0.936 8 1.000 0
t6 940 0.821 7 0.865 9 t16 620 0.894 6 1.000 0 t26 200 0.512 8 0.525 5
t7 824 0.762 6 0.812 5 t17 598 0.552 9 0.566 1 t27 178 0.529 8 0.547 4
t8 763 0.959 3 0.973 5 t18 568 0.778 8 1.000 0 t28 155 0.847 5 0.875 0
t9 744 0.837 5 0.912 0 t19 460 0.470 4 0.473 0 t29 144 1.000 0 1.000 0
t10 735 0.610 4 0.623 5 t20 458 0.491 8 0.507 8 t30 124 1.000 0 1.000 0

To sum up, the above analysis results show that although software tasks are much fine-grained compared with
projects, TaskBeD can effectively identifies the relatively efficient tasks to set up the performance benchmark using

1508 Journal of Software 软件学报 Vol.20, No.6, June 2009

Algorithm 2. Moreover, with the merits of dealing with multivariate and VRS and enabling developers to establish
different task performance benchmarks for tasks of different scale, TaskBeD’s VRS model is more appropriate for
benchmarking software tasks than CCR model.

5.2 Establishing different reference sets

To verify the effectiveness of Algorithm 3, we apply the Algorithm 3 to T. The resulted reference relationships
among tasks in T are shown in Table 5.

Table 5 Reference relationships of T
 CCR BCC CCR BCC

tu ES P PW ES P PW tu ES P PW ES P PW
t1 1.000 0 t1 1.000 0 1.000 0 t1 1.000 0 t1 0.359 4 t1 0.249 4

t1 0.818 0 t1 0.780 3 t15 0.357 7
t4 0.065 8

t14 0.918 2 t30 0.947 9 0.924 7
t30 0.392 9 t2 0.918 6 t29 0.197 0 0.934 8

t29 0.153 9 t1 0.307 5
t1 0.685 7 t15 0.983 6 t30 1.552 6 1.000 0 t15 1.000 0

t3 0.942 2 t30 0.961 9 1.000 0 t1 1.000 0 t1 0.232 9
t1 0.575 8 t16 0.894 6 t30 2.034 2 1.000 0 t16 1.000 0

t29 0.262 0 t1 0.316 1 t1 0.291 0 t4 0.795 3
t30 0.427 7

1.000 0 t4 1.000 0
t29 0.518 7 t25 0.141 7

t1 0.591 6 t1 0.582 6
t17 0.552 9

t30 0.194 9
0.566 1

t29 0.537 3 t5 0.756 1 t29 0.318 1 0.768 5 t29 0.417 4 t1 0.271 5
t1 0.551 0 t1 0.582 6 t18 0.778 8 t30 1.123 7 1.000 0 t18 1.000 0

t29 0.402 4 t1 0.228 6 t1 0.226 3 t6 0.821 7
t30 0.097 2

0.768 5 t29 0.417 4 t29 0.308 7 t29 0.339 4
t1 0.463 8 t1 0.312 5

t19 0.470 4
t30 0.439 8

0.473 0
t30 0.434 3

t3 0.083 3 t1 0.218 3 t1 0.188 1
t4 0.124 9 t29 0.624 0 t4 0.039 6 t7 0.762 6 t30 0.739 0 0.812 5

t25 0.479 2 t25 0.133 7
t1 0.418 0 t1 0.346 9

t20 0.491 8
t30 0.188 7

0.507 8

t29 0.638 6
t15 0.193 4 t1 0.135 0 t1 0.064 0
t25 0.282 5 t15 0.230 9 t8 0.959 3 t30 0.830 7 0.973 5

t30 0.177 3
t21 0.592 3 t30 1.062 4 0.596 2

t30 0.705 1
t1 0.388 2 t3 0.447 0 t1 0.042 3 t16 0.285 7

t4 0.100 5 t22 0.682 6 t30 1.582 0 0.784 3 t25 0.714 3
t16 0.016 7 t1 0.084 1 t1 0.075 4 t9 0.837 5 t30 1.057 0 0.912 0

t25 0.435 8 0.786 1 t29 0.113 1
t1 0.412 3 t1 0.395 9

t23 0.764 8 t30 0.831 7 t30 0.811 4
t29 0.191 7 t25 0.312 7 t1 0.076 9 t1 0.073 4

t29 0.250 1 t29 0.064 6 t29 0.110 1 t10 0.610 4
t30 0.443 0

0.623 5

t30 0.041 4
t24 0.663 7

t30 0.824 6
0.671 0

t30 0.816 5
t1 0.373 9 0.971 7 t3 0.477 5 t1 0.041 1

t4 0.042 6 t25 0.936 8 t30 1.251 2 1.000 0 t25 1.000 0

t16 0.007 1 t1 0.054 8 t1 0.047 8 t11 0.904 6 t30 1.085 5
t25 0.472 8 t29 0.231 5 t29 0.321 7

t1 0.353 1 t1 0.201 2
t26 0.512 8

t30 0.646 6
0.525 5

t30 0.630 5
t15 0.243 6 t1 0.029 6 t1 0.023 7
t16 0.282 4 t27 0.529 8 t29 0.911 7 0.547 4 t29 0.976 3 t12 0.872 7 t30 1.293 8 0.917 2

t25 0.272 7 t1 0.008 2 t25 0.166 7
t1 0.373 0 t1 0.010 3 t29 0.799 7

t4 0.632 2
t28 0.847 5

t30 0.217 1
0.875 0 t29 0.083 3

t29 1.000 0 t29 1.000 0 1.000 0 t29 1.000 0
t13 0.732 3 t29 0.771 2 0.933 2

t29 0.357 5 t30 1.000 0 t30 1.000 0 1.000 0 t30 1.000 0

(P: peer; PW: peer weight)

Both peers and peer weights (see Definition 11) of each task derived from Algorithm 3 are shown in Table 5.
For example, t7 derives a reference set of tasks {t1,t30} using CCR model under the results of Algorithm 3. By
further investigating the peer weight {0.4638,0.7390} of each peer in the reference set {t1,t30}, t30 is identified as
the most suitable task to learn best practices from because t30 has the biggest peer weight 0.7390 in the peer set

阮利 等:基于数据包络分析的软件任务性能基准评价 1509

{t1,t30}. Similarly, using BCC models, results indicate that developers can determine to emulate best practices from
t25 by comparing the peer weight {0.3125,0.0833,0.1249,0.4792} among its reference set {t1,t3,t4,t25}. The
reference set and the most valuable task to emulate for the other tasks tu(tu∈T) in Table 5 can be derived in a similar
way.

To sum up, by investigating the reference set using Algorithm 3, TaskBeD can establish different reference sets
for each relatively inefficient task. Moreover, at the aid of peer weights of the peers, TaskBeD can further find
which task is of the biggest improvement reference value to the developer’s own personal software process.

6 Sensitivity Analysis

In this experiment, we verify TaskBeD’s capability of sensitivity analysis by applying Algorithm 4. Using
Algorithm 4, TaskBeD first calculates the average performance score of (θu) for T. The average VRS efficiency
(Emean), standard deviation (SD), minimum VRS efficiency (Emin) and the number of efficient tasks (Neff) for T are
shown in Table 6. Emean=0.8323 shows that there is a potential for performance improvement of the task set T
between 10 to 20 percent compared with the best practices tasks {t1,t3,t4,t15,t16,t18,t25,t29,t30}. Those nine tasks
{t1,t3, t4,t15,t16,t18,t25,t29,t30} are identified by Algorithm 2 as of relatively high performance (see Definition 7).
Secondly, each of the nine tasks is removed one at a time and the Emean is calculated using Algorithm 4 in TaskBeD.
T h e

results are shown in Table 7. In Table 7, indicates the remv
ut uth task is removed from T. Emean indicates that the

average performance scores of the task set (T−{ remv
ut }) and thus N equals to the size of the set (T−{ }remv

ut), i.e.,

N=29. Finally, the Emean in Table 6 and Table 7 is compared.

Table 6 Average performance score of T
N Emean SD Emin Neff
30 0.832 3 0.181 3 0.473 0 9

Table 7 Average performance score of T with a task removed

N remv
ut Emean N remv

ut Emean N remv
ut Emean

29 t1 0.840 8 29 t15 0.828 9 29 t25 0.832 7
29 t3 0.826 6 29 t16 0.837 0 29 t29 0.844 4
29 t4 0.830 3 29 t18 0.826 6 29 t30 0.836 4

(: A removed task; remv
ut Emean: Mean of EVRS)

By comparing Emean in Table 6 and Table 7, we can know that none of the identified frontier tasks {t1,t3,t4,t15,
t16,t18,t25,t29,t30} are extreme in the sense that their removal hardly influence the average efficiency Emean. i.e., there
is still a potential improvement of around 20 percent (see Table 7). This result verifies that TaskBeD’s task
benchmarking models and algorithms on software tasks (see Table 3) are reasonable.

7 Conclusions and Future Work

In this paper, we propose a novel software task performance benchmarking method based on DEA-TaskBeD to
support quantitative software process improvement. TaskBeD can be regarded as a further extension of Refs.[3−6]
by scaling the DEA-based software projects benchmarking method down to fine-grained software tasks and
introducing mechanisms of transforming undesirable outputs and sensitivity analysis. Experimental results show
that the proposed TaskBeD method achieves a good result of dealing with multivariate, VRS and undesirable
outputs.

Our future work will concentrate on the following topics. Firstly, we plan to further evaluate the software tasks
to analyze the developer’s personal software process change effects using TaskBeD. Secondly, we are extending our

1510 Journal of Software 软件学报 Vol.20, No.6, June 2009

interactive and visual tool TaskBench to provide more and better supports for benchmarking software tasks using
TaskBeD.

References:
[1] Humphrey WS. Introduction to the Team Software Process. Addison Wesley Professional, 1999. 10−343.
[2] Stark JA, Crocker R. Trends in software process: The PSP and agile methods. IEEE Software, 2003,20(3):89−91.
[3] Stensrud E, Myrtveit I. Identifying high performance ERP projects. IEEE Trans. on Software Engineering, 2003,29(5):398−416.
[4] Myrtveit I, Stensrud E. Benchmarking COTS projects using data envelopment analysis. In: William A, James B, et al., eds. Proc. of

the 6th Int’l Software Metrics Symp. Washington: IEEE Computer Society, 1999. 269−278.
[5] Ding LP, Yang QS, Sun L, Tong J, Wang YJ. Evaluation of the capability of personal software process based on data envelopment

analysis. In: Li MS, Barry W, Leon JO, eds. Proc. of the Software Process Workshop. Beijing: Springer-Verlag, 2005. 235−248.
[6] Ruan L, Wang YJ, Wang Q, Li MS, Yang Y, Xie LZ, Liu DP, Zeng HT, Zhang SH, Xiao JC, Zhang L, Nisar MW, Dai J. Empirical

study on benchmarking software development tasks. In: Wang Q, Dietmar P, Diet MR, eds. Proc. of the Int’l Conf. on Software
Process. Minneapolis: Springer-Verlag, 2007. 221−232.

[7] Katrina D, Maxwell PF. Benchmarking software development productivity. IEEE Software, 2000,17(1):80−88.
[8] Farris JA, Groesbeck RL, Aken EMV, Letens G. Evaluating the relative performance of engineering design projects: A case study

using data envelopment analysis. IEEE Trans. on Engineering Management, 2006,53(3):471−482.
[9] Rollo AL, Morris P, Wasylkowski E, Dekkers C, Forselius P. Benchmarking Standards, Vol.1.0. US: Int’l Software Benchmarking

Standards Group, 2008. 7−43.
[10] Fleming QW, Koppelman JM. Earned Value Project Management. 3rd ed., Project Management Institute, 2005. 8−230.
[11] Florac WA, Carleton AD. Measuring the Software Process: Statistical Process Control for Software Process Improvement. Boston:

Addison-Wesley Professional, 1999. 10−272.
[12] Banker RD, Charnes A, Cooper W. Some models for estimating technical and scale inefficiencies in data envelopment analysis.

Management Science, 1984,30(9):1078−1092.
[13] Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. European Journal of Operation Research,

1978,2(6):429−444.
[14] Cooper WW, Seiford LM, Tone K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and

DEA-Solver Software. 2nd ed., Springer-Verlag, 2006. 10−490.
[15] Holger S. Undesirable outputs in efficiency valuations. European Journal of Operation Research, 2001,132(2):400−410.
[16] Boussofiane A, Dyson RG, Thanassoulis E. Applied data envelopment analysis. European Journal of Operational Research, 1991,

52(1):1−15.
[17] Ruan L. Empirical study on benchmarking software development tasks. Beijing: Institute of Software, the Chinese Academy of

Sciences, 2006. 1−14.

RUAN Li is a Ph.D. candidate at the
Institute of Software, the Chinese Academy
of Sciences. Her current research areas are
software process technologies, quality
management and data mining.

 WANG Qing is a professor at the Institute
of Software, the Chinese Academy of
Sciences. Her major research fields are
software process technologies and quality
assurance, software estimation and
requirement engineering.

WANG Yong-Ji is a professor at the
Institute of Software, the Chinese Academy
of Sciences. His researches areas are
computer-controlled real-time systems,
artificial intelligence, data mining,
software engineering.

 ZENG Hai-Tao is a Ph.D. candidate at the
Institute of Software, the Chinese Academy
of Sciences. His current research areas are
operating system security, database
security and real-time system.

