
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.11, November 2008, pp.3042−3052 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.03042 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

MANET中基于簇的缓存一致性维护策略
∗

谢高岗 1+, 李振宇 1,2, 陈嘉宁 1

1(中国科学院 计算技术研究所,北京 100190)
2(中国科学院 研究生院,北京 100049)

Cluster-Based Consistency Scheme of Cooperative Caching in Mobile Ad Hoc Networks

XIE Gao-Gang1+, LI Zhen-Yu1,2, CHEN Jia-Ning1

1(Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100190, China)
2(Graduate University, The Chinese Academy of Sciences, Beijing 100049, China)

+ Corresponding author: E-mail: xie@ict.ac.cn

Xie GG, Li ZY, Chen JN. Cluster-Based consistency scheme of cooperative caching in mobile ad hoc
networks. Journal of Software, 2008,19(11):3042−3052. http://www.jos.org.cn/1000-9825/19/3042.htm

Abstract: Cooperative caching has been adequately addressed in MANETs for QoS and cooperative computing.
This paper presents a Cluster-based Consistency Scheme, CCS. In CCS, the close nodes in locality are organized
into a cluster, where a more stable and powerful node is selected as header in each cluster and the others are at most
2 hops away from the header as the members of the cluster. All header nodes form a ring with Chord as group
management protocol. An updating tree is built dynamically on top of the Chord ring to propagate the updated data
items. In this way, the updated data item is broadcasted within cluster at MAC layer and transmitted among the
header nodes along the updating tree. The simulation results demonstrate CCS outperforms the Gossip scheme for
consistency of cooperative caching with less workload, higher success rate and less updating time.
Key words: MANET; cluster-based consistency scheme; cooperative caching; performance evaluation

摘 要: 协作缓存在移动自组织网络中得到了充分的应用和部署 .提出了一种基于簇的一致性维护策略

CCS(cluster-based consistency scheme).在 CCS 中,相邻的节点组成一个簇.每个簇中挑选一个能量较高、较稳定的节

点作为簇头,而簇中的其他节点与簇头节点最多相距两跳.簇头节点利用基于 DHT(distributed Hash table,分布式哈

希表)的 Chord 协议作为组管理协议,即簇头节点组成一个 Chord 环.通过动态地在 Chord 环上建立更新树传播更新

内容.这样,更新数据在不同的簇之间是通过更新树传播的,而在簇内是通过 MAC 层的广播传播的.仿真实验结果表

明,与基于流言传播的缓存一致性维护策略相比,CCS 具有开销小、成功率高和传播快的特点.
关键词: 移动自组织网络;基于簇的一致性维护策略;协同缓存;性能评估
中图法分类号: TP393 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60403031, 90604015 (国家自然科学基金); the

National Basic Research Program of China under Grant No.2007CB310702 (国家重点基础研究发展计划(973))
Received 2007-03-05; Accepted 2007-08-03

谢高岗 等:MANET 中基于簇的缓存一致性维护策略 3043

1 Introduction

Mobile Ad hoc networks (MANETs) are autonomously structured with multi-hop wireless links in peer-to-peer
fashion without the aid of infrastructure network[1]. The rapid progress in wireless network, mobile communication
and portable computer technologies makes MANETs to be used not only in military rescue scenarios, but also for
industrial and commercial applications[2]. There are lots of previous researches in MANET focusing on MAC
schemes and routing protocols[1]. Although MAC and routing are important issues in MANET, efficient data access
is also very important since there are many restrictions, such as unpredictable signal propagation, limited
bandwidth, dynamic topology and energy constraint, which introduce unique issues and difficulties for data delivery
and application deployment in MANET environments[3]. Cooperative caching is a useful technique to improve the
system performance to tackle these restrictions and implement cooperative computing[4,5].

Although cooperative caching has been extensively studied in Internet to improve the performance of
applications, e.g., Web and P2P applications[6,7], these methods cannot be applied to MANETs directly due to
routing, mobility and resource constraints[4]. Centralized scheme is a straightforward way to maintain replica
consistency. However, if all nodes access data from the same source node, they update their cache at great expense
of battery power, bandwidth, and traffic workload. A gossip-based scheme has a good quality of fault tolerance.
However, it brings a lot of redundant update messages and consumes lots of bandwidth unnecessarily. Another
feasible way is a tree-based scheme. This method has shorter convergence time and less redundant update messages.
How to maintain the tree structure and improve the fault tolerance are the two most important problems in this
scheme.

Cooperative caching and data replication schemes in ad hoc network have been studied in Ref.[4]. These
approaches mainly focus on the generation of caches and replicas, but not on their consistency. In Ref.[5], the
authors propose a relay peer-based caching consistency, to address the caching consistency issues in MANET. The
data source chooses relay peers from stable, capable and powerful hosts, and push updates to these relay nodes
periodically. Other caching hosts get the updated data from relay peers in a pull style. This hierarchical scheme
augments the loads on the relay node, which would in turn overload these nodes. Further more, “pull” requests are
broadcasted in the network, which consumes bandwidth and energy, the precious resource in MANET.

In this paper, we propose an efficient Cluster-based Consistency Scheme for cooperative caching, called CCS.
CNs are grouped into different clusters. Any member nodes in a cluster can communicate with their header nodes at
most 2 hops. Header nodes are organized in a Chord[8] ring. A binary tree, taking the information of location into
account, is constructed on top of the Chord ring. Updated Data Items (UDIs) in members are submitted to their
header nodes firstly and then transmitted along the updated tree, where the header node in the cluster with data
source is the root node of the tree. Header nodes broadcast the UDIs to all the members in their clusters. Simulation
results show that CCS generates less traffic workload and has higher updating success ratio. The updating tree is
built dynamically in CCS so that it is unnecessary to maintain updating tree all the time. Although this may increase
the updating time since construction of updating tree is required for every UDI, it is more cost-efficient than
maintaining updating trees all the time when considering the dynamical nature in MANET.

The rest of this paper is organized as follows. Section 2 describes the service model of the MANET and CCS
scheme. In Section 3, we analyze the performance theoretically. Section 4 simulates CCS and Gossip in ns2 and the
experimental data are analyzed. Finally, we conclude and discuss our future work in Section 5.

3044 Journal of Software 软件学报 Vol.19, No.11, November 2008

2 CCS

2.1 System model

A MANET can be considered as a graph G={V,E}, where V={v1,v2,…,vN} is the set of nodes in the network
and E={ei,j|i,j=1,2,…,N,i≠j} define the connection relationship between nodes. ei,j=1 means vj and vi can send data
each other directly, where we assume that if ei,j=1 then ej,i=1. There are several groups {G1,G2,…,Gw} in G, and all
the nodes in the same group (say Gk) work cooperatively and keep caches consistent. Nodes belonging to the same
group are called cooperative nodes (CNs). The number of nodes in group Gk is nk. A node may belong to different
groups since it can cooperate with others for different tasks. Once a node obtained an UDI, it should transmit it to
its CNs with less traffic workload in less time.

Clustering scheme is proposed and deployed to improve the performance of routing protocol in MANET. It can

decrease the scale of network and implement hierarchy routing[9]. A cluster is a set of nodes close in

geography location belonging to group Gk. So, , where mk is the number of clusters in the

group. There is a header node and several member nodes

k
iC

{ | 1,2,3,..., }k
k i kG C i m= =

,k i
j

,
0
k iHN MN in the cluster . k

iC ,k i
jMN transmits data

to firstly. Then, transfers the data to other header nodes as well as the member nodes in the same ,
0
k iHN ,k i

0HN

cluster. The other header nodes will also broadcast the data to all of their members. A well-known example of
cluster is the 3hBAC (3-hop between adjacent cluster heads)[10].

There are three procedures in CCS: Clustering Procedure in the initial phase, Updating Tree Constructing
Procedure when an UDI emerges and Data Transmitting Procedure. We describe these procedures in this section.

2.2 Clustering procedure

Every group has the same procedure. Without loss of generality, we just discuss CCS in the group named Gk.
Other groups can perform CCS in the same way independently. Before the procedure description, some messages
are listed as follows.

1) CST_REQ: Message for requesting the membership of cluster, containing group ID in the payload.
2) CST_GRT: Message granting the node sending CST_REQ to take part in the cluster as a member or a

guest, containing group ID and cluster ID (cluster header ID) in the payload. A guest is a node in the
group with a hop from a member.

3) CST_ACK: Message for acknowledging the CTS_GRT.
4) CST_DCL: Message sent from a cluster header to its member nodes or from a member node to its guest

periodically.
5) CST_QUIT: Message from a member node to its cluster header and backup header to notify the node will

quit the cluster.
6) CST_BH_REQ: Message from a cluster header to invite its member to be the backup header of the

cluster.
7) CST_BH_ACK: Message to the cluster header to express the willing of being the backup header.
8) CST_BH_GRT: Message from a cluster header to grant the node sending CST_BH_ACK to be its backup

header.
Every node belonging to the same group Gk has six possible statuses S={Init,Header,Backup_Header,Member,

Guest,Down} denoting that the node is Initial (not belong to any cluster), header, backup header, member, guest of a
cluster, or invalid, respectively. In the initial phase, the status of every node is init. A new node being added into the
MANET is also in the initial status. The node vj in initial status broadcasts a message CTS_REQ to its

谢高岗 等:MANET 中基于簇的缓存一致性维护策略 3045

neighbor nodes in one hop to request the membership of a cluster and starts up a timer. If a header of cluster ,
0
k iHN

receives this message, it sends a CTS_GRT message to accept vj as its member. Once vj receives CTS_GRT from
,

0
k iHN and decides to join the cluster of , it sends a message CST_ACK to and sets itself into

member status. Then, records vj as its member. If a

member node

,
0
k iHN ,

0
k iHN

,
0
k iHN

,k i
xMN of a cluster receives the message

CTS_REQ from vj,

k
iC

,k i
xMN also replies CTS_GRT message to vj

and asks vj to be its guest. If vj agrees to be the guest of ,k i
xMN , it

replies CST_ACK to ,k i
xMN and sets itself to a guest status. If the

timer of vj is time out and vj has not received CTS_GRT from other
nodes, vj sets itself into header status and broadcasts CST_DCL in
one hop. If a node receives the CST_DCL, it can choose to join the
cluster and reply CST_ACK. The transform of nodes status is
described in Fig.1.

2.3 Updating tree of header nodes

In this section, we discuss the organization architecture of header nodes (HNs). In CCS, we take advantage of
Chord[8] as the group management protocol for all HNs which form a Chord ring Rk logically. A new added HN,

labeled as , joins the Chord ring according to the joining protocol of Chord[8]. When is out of service ,
0
k iHN ,

0
k iHN

or changes its header status, it leaves the Chord ring according to the leaving protocol of Chord[8]. If the UDI

originated from the cluster of , a binary tree with as its root is built on top of ring Rk to propagate the ,
0
k iHN ,

0
k iHN

UDIs. In this section, we first illustrate how to build a Chord tree, which is locality irrelevant. Then, the method of
adjusting a Chord tree to a corresponding locality aware updating tree is proposed.
2.3.1 Chord tree construction

As mentioned above, the online HNs form a Chord ring Rk. The Chord tree is built on top of Rk through

partitioning the identifier space that the ring represents. Initially, the sponsor node holds the whole ,
0
k iHN

identifier space. This identifier space is partitioned into two parts
with equal size. We choose the first node of each part as the
representative node to hold the identifier space of this part and set

these two HNs as the children of . Each part is further ,
0
k iHN

partitioned into two parts with equal size, and so forth, until there
is only one HN in this identifier part. The pseudo code is listed in
detail in Fig.2. The notation X.foo() stands for the function foo()
being invoked at and executed on HN X. The function
find_successor(id), provided by the Chord protocol, is used to find
the successor node with the id. The function X.get_rpn(region) is
to get the representative node of the region space.

Suppose there are HNs list in a MANET denoted as
{v0,v1,v2,v3,v4,v6,v7,v10,v12,v13}. Figure 3 illustrates a Chord ring
and a binary tree built on top of this ring according to the
algorithm presented in Fig.2.

Lemma 1[11]. For a Chord ring with mk HNs, the maximum

Fig.1 Node status transform

Backup_H

Down

Guest

Member

9 7 2 4
12b Init

12a 13

Header

12c

12d
12e

10

11 8

5

3

6 1

X.region_partition(region_x)
1: if (X.id+1>region_x.end)
2: return;
3: region←(X.id+1,region_x.end);
4: Split region into 2 partitions with e
5: for i=1 to 2{
6: region[i]←the i-th partition;
7: RPNregion[i]=X.get_rpn(re
8: if (RPNregion[i]!=NULL){
9: X.children=X.children
10:

qual size

gion[i]);

∪RPNregion[i];

RPNregion[i].region_partition(region[i]);}
11: } /* end of for i=1,…*/

X.get_rpn(region)
1: id←first ID of this region;
2: node←X.find_successor(id);
3: if (node.id∉region)
4: return NULL;
5: return node;

Fig.2 Chord ring building

3046 Journal of Software 软件学报 Vol.19, No.11, November 2008

number of hops from the root node to the leaf node for UDI transmission along the Chord tree in the MANET, with
high probability, is

 2logc k
aH O m

r
⎛ ⎞

′ = ×⎜⎜
⎝ ⎠

⎟⎟ (1)

where a is the acreage of the MANET, r is the coverage radius of a node.
In CCS, the maximum hops of UDI transmission in a cluster are 2 hops, from guest nodes to HN or reverse

direction. It is straightforward to deduce Theorem 1 below.
Theorem 1. The maximum number of hops for UDIs with CCS with the highest probability is less than

 2log 4t k
aH O m

r
⎛ ⎞

′ = ×⎜⎜
⎝ ⎠

+⎟⎟ (2)

If an UDI in a cluster is transmitted to an HN, the UDI can be transmitted along the Chord tree where the
initiative HN is the root node. However, the Chord ring is locality irrelevant as it does not account for the proximity
relationship among header nodes in the consistent hash function. Thus, the Chord tree, which is built on top of the
Chord ring, is also locality irrelevant. So, there is a topology mismatch between Chord tree and actual MANET
topology. Propagating UDIs with this Chord tree costs unnecessary bandwidth and energy. For example, in the
Chord tree illustrated in Fig.3, it is possible that v2 and v6 are neighbors of v0 in MANET, and v3 and v7 are
neighbors of v1 in MANET. In this situation, an UDI may follow the path {v0,v6,v1,v6,v7} from the network layer
view in MANET. Then, v6 needs to receive and forward the UDI twice, the first one is forwarded to v1, and the
second one is for itself. But only the last one makes sense for data updating of v6 in the application level. Note that
when v1 sends data to v6, v7 may also receive a copy of the data for that it is a neighbor of v1. However, only the
network layer of v7 can perceive the data and the application layer has no knowledge of the data. This motivates us
to exploit the locality information of MANET and adjust the Chord tree to a more efficient updating tree.

 Replica node
Height=4

Level=0

Level=1

Level=2

Level=3

Level=4

[0,15]

[13,13]

[11,13]

[9,15]

[7,7]

[6,8]

[4,4]

[3,4]

[2,5]

[1,8]

0

10 1

0

2

3

4

6

7

12

13

10

15

14

13

12

11

9
8

7
6

5

4

3

2
1

Fig.3 Chord ring and the chord tree

2.3.2 Updating tree construction and UDIs transmission
As in Ref.[11], we define some types of messages for the procedures of updating tree construction and UDIs

transmission.
• UTC_Init_Msg: Initializing message of updating tree construction which is generated by the root HN.
• BDReq_Msg: Binding requirement message is sent from a node requiring another node to be its parent node

in updating tree.
• RLSReq_Msg: Releasing requirement message is sent from a child node to its parent node in Chord tree to

end their joint relationship and ask its parent node to take over the children nodes.

谢高岗 等:MANET 中基于簇的缓存一致性维护策略 3047

A table is stored in each HN with a list of dynamic data items consisting of a group ID, a root node ID, a parent
node ID, a grandparent ID and a list of children nodes. Initially, the table denotes the topology of a Chord tree. After
the procedure of updating tree construction, the table denotes the topology of the updating tree.

A cross-layer method is proposed to adjust a Chord tree to an updating tree in order to reduce the topology
mismatching. The root node in Chord tree initially sends an UTC_Init_Msg to all its children nodes once a UDI
emerges on it. Its child HN vm receives, parses and validates the UTC_Init_Msg. If it is a valid message, vm checks
whether the value of field of HN_ID vp in UTC_Init_Msg is the ID of its parent node vq of Chord tree. If vp=vq, vm
sends a BDReq_Msg to vp as its parent node in the updating tree, then forwards the message to its children HNs.
Once vp receives the BDReq_Msg, it adds vm as one of its child nodes and replies an acknowledgement message to
vm. Otherwise, besides BDReq_Msg from vm to vp, vm sends an RLSReq_Msg to vq, and asks for vq to delete its ID
from child nodes list of vq and take over its child nodes. vq adds child nodes of vm into Children_ID of its table and
sends message to these children nodes of vm to update the fields of
Parent_ID and GParent_ID with vq and parent node ID of vq in their
tables. In the aforementioned example, after adjustment, node v6 will be a
child of v0. Thus, the UTC_Init_Msg sent by v0 to v7 follows the path
{v0,v6,v1,v7} from the network layer. Note that, from the application layer,
both v1 and v6 are children of v0. If we suppose that v6 is an intermediate
node in the path between v0 and v7, v4 is an intermediate node in the path
between v10 and v12, and v13 is an intermediate node in the path between v2
and v3, then the corresponding updating tree of the Chord tree of Fig.3 is
shown in Fig.4 (the paths from 0 to 1, 0 to 10, 1 to 2, 1 to 7, 2 to 3 and 10
to 12 are {0,6,1}, {0,10}, {1,2}, {1,7}, {2,13,3} and {10,4,12}, respectively). The procedure of a updating tree
constructing can be found in Ref.[11].

When we build updating tree from Chord tree, while the HNs in Chord tree may not be promoted to an upper
level, at least they are not demoted to a lower level. Thus, the height of updating tree is less than the height of the
Chord tree. With respect to the average height of updating trees, we have the following theorem.

Theorem 2. The upper bound of average height of the updating trees is not longer than Chord tree.

Message flow in
network layer

10

13

12

0

1

2

3

4

6

7

Logical connection
in application layer

Fig.4 Updating tree

 2log 4t k
aH O m

r
⎛ ⎞

≤ ×⎜⎜
⎝ ⎠

+⎟⎟ (3)

Compared with the Chord tree, although the height of the updating tree may not be reduced, the number of
hops from the network layer view can be reduced greatly as the HNs which are close in the updating tree are close
in the actual MANET too.

Once the updating tree has been constructed, the UDI is submitted to the HN in the same cluster firstly and
then propagated from the HN, along the updating tree, to all the other HNs. Finally, the other HNs transmit the UDI
to their member nodes. The clusters are built and maintained all the time, but the updating tree is constructed once
an UDI appears and destroyed after the process of updating. The updating tree is released in the following way.
Once the root HN finishes the transmission the UDI to its child HNs, it deletes the information of the updating tree
from its memory.

Note that after transferring the update data, the links between the parent HNs to their children nodes are
destroyed. The reason is that, to fully take advantage of the system resources, we should use multiple updating trees
to propagate updated contents. Otherwise, if we use only one updating tree, most nodes are leaf nodes which would
make no contribution to content delivering. In our experiments, the maintenance cost of multiple updating trees is

3048 Journal of Software 软件学报 Vol.19, No.11, November 2008

larger than the cost of building an updating tree while necessary, especially in dynamic MANET systems

2.4 Other issues in CCS

2.4.1 Roaming of nodes
In MANET, nodes can roam from one area to another. The situation of nodes out of service due to nodes roam

is described later. If the mobile node is a member or a guest, it can be maintained as clustering procedure. If the
node is an HN, although the HN roam may change the route path between HNs, it has no effect on the Chord ring
because the HNs are still reachable from other HNs. However, the updating tree may not be as efficient as before.
Note that, although this brings some unnecessary overhead, it does not disrupt the update operation. And in view of
the fast convergence of CCS, we do not address this issue, leaving it for future work.
2.4.2 Invalidation of nodes

If the invalid node is a member node or a guest node, it can be processed according to the clustering procedure
and doesn’t affect other clusters. The MN sends a leave request to its header node and the HN deletes the MN from
its member list. If the HN detects that one of its MN is invalid, it also deletes the MN in its memory.

If the invalid node is an HN, the situation is more complicated. Every HN stores q prevenient HNs of the
updating tree in its memory. A periodic detection message is sent from HNs to their parent HN. If the HN finds its
parent HN is invalid, it sends a BDReq_Msg to its grandparent HN and sets its grandparent to its parent node. If it
does not receive acknowledgement from all its prevenient HNs by some deadline, it sends a message to a root node
for rebuilding a Chord tree. Then, the Chord tree will be reconstructed.
2.4.3 New nodes

New nodes can join current MANET dynamically. If a new node is interested in the UDI and wants to maintain
consistency with other nodes, it tries to find a cluster, joins it and gets UDI from the HN. Otherwise it joins as an
HN into the Chord ring according to the Chord joining protocol. Then, it asks the mobile nodes stored in its finger
table[8] for the latest version of the UDI. This is similar to the “pull” scheme in Ref.[6].

3 Theoretical Assessment of CCS

In this section, we analyze the performance of CCS furthermore and define some performance metrics of the
consistency scheme for the simulation experiments.

3.1 Performance of CCS

Every HN in Gk can generate UDIs and initiate construction of an updating tree as the root node. Several UDIs
at the same node can be transmitted along the same updating tree. So, only one updating tree is necessary for several
UDIs at the same node. That is, the maximal number of updating tree concurrently existing in group Gk is the same
as the number of clusters. So, we can get some similar conclusions to that in Ref.[11].

Theorem 3[11]. The maximal number of data items in the table storing the updating tree in each HN is
 DI=mk (4)

Theorem 4[11]. The total number of hops of a UDI transmission on average is

(1)

2
k

k
u

am
m

H
r

π
− ×

×
′ = + (5)

3.2 Performance metrics

The goal of the consistency scheme is keeping CNs consistent with the least traffic and least time even in
unstable and dynamic network. In order to verify the performance of the consistency scheme, some metrics are

谢高岗 等:MANET 中基于簇的缓存一致性维护策略 3049

i

defined below.
• The overhead of updating is defined as the overhead the scheme brings to the network. The overhead of

updating OU is defined as Eq.(6)
 iOU h B= ×∑ (6)

where Bi is bytes of message i, and hi the number of hops message i traversed.
• We define the workload of updating, including traffic in control plane and data plane as Eq.(7)

 i i jWU OU DU h B h B′= + = × + × j∑ ∑ (7)

where jB′ is the packets of UDIj and hj is the total hops for UDIj.

• In order to estimate the updating speed, we define the period from UDI generation to updating finished as
the time of updating.

• Due to mobility, invalidation or island nodes, it is unavoidable that some HNs fail to be updated with UDI.
The success rate of updating is defined as Eq.(8)

 i

i

nR
n
′

= (8)

where is the number of nodes updated successfully. in′

4 Simulation Experiment

The performance of CCS has been evaluated through simulation experiments under different system settings.
We also compare CCS with gossip scheme[12] and our previously proposed DTCS scheme[11]. In gossip scheme,
When a CN in a group receives a UDI for the first time, it chooses k CNs from the group randomly, and sends the
UDIs to these CNs. Otherwise, it just simply discards the UDIs that have been received before. To achieve a fair
comparison, the fanout of each node in Gossip is limited to two (i.e. k=2). DTCS distinguishes from CCS that it has
no cluster and all the CNs are formed in a Chord ring.

We mainly focus on three metrics: updating workload, updating time and success rate, defined in Section 3.

4.1 The simulation model

The simulation is based on ns-2[13] in version 2.28 with the CMU wireless extension running on Dawning
4000A super computer with 44 64-bits Opteron CPU of AMD, 84GB memory and Suse Linux Enterprise Server 9.0
operating system with 2.6.5-7.97-smp kernel. AoDV[14] is used as the underlying routing protocol. The default
simulation parameters are shown in Table 1. We assume that only some nodes are involved in the cooperative work
(e.g. only these nodes have caches of data) and the cooperative nodes are chosen randomly from the system. The
node moving pattern follows the random way point movement model[4]. The UDI is generated randomly in CNs.
Finally, the HNs broadcast CST_DCL message every 5 seconds.

Three experiments are performed with the same experiment parameters but different scenario scripts. The
average values of the three experiments are calculated and reported.

Table 1 Simulation parameters
Parameter Default value Range

Number of nodes 300 200~400
Number of CNs 100 50~150
Area (km×km) 2×2 1×1~3×3
Propagation distance (m) 200 100~300
vmax (m/s) 2 2~18
Pause time (s) 30 −
Simulation time (s) 600

3050 Journal of Software 软件学报 Vol.19, No.11, November 2008

1.0
0.5

4.2 Effects of number of CNs

In Fig.5, the performance of each scheme with different number of CNs has been estimated and compared. It is
apparent that the updating workload and updating time of each scheme increase linearly as the number of CNs
grows. The success rate of each scheme seems to have little relationship with the number of CNs. Compared with
Gossip and DTCS, CCS has achieved a higher success rate and lower updating time, but with less updating
workload. There are two reasons for that, 1) In CCS, only the headers join the chord tree to get their replica, which
limited the height of the chord tree and made the scheme converge rapidly; 2) the members get their replicas by the
headers’ broadcast, which also save a lot of bandwidth.

Note that when the number of CNs is small, the updating time required in CCS is bigger than in DTCS. This
can be explained by two facts. First, when the number of CNs is small, the success rate of CCS is bigger than the
success rate of DTCS. This shows that CCS needs to send data to more CNs than DTCS, which increases the
updating time. Second, in CCS, the source node only sends the updating data to one node (i.e. its cluster header) at
the first step, while, in CCS, the source node can send the updating data to several nodes. And when the number of
CNs is small, this first step counts more.

5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5W

or
kl

oa
d

of
 u

pd
at

in
g

(b
yt

e*
ho

ps
)

×107

 Updating workload of cluster
Updating workload of DTCS
Updating workload of gossip

50 75 100 125 150

Number of CNs
(a) Updating workload

(b) Updating time (c) Success time

Fig.5 Effects of number of CNs

4.3 Effects of moving rate of nodes

The movement of nodes may also affect the performance of a scheme. Figure 6 compared each scheme under
different movement of nodes. It is obvious that the success rate starts to decrease as the nodes move frequently,
which also causes decreasing of updating workload. The updating time seems to have nothing to do with the
movement of nodes. To achieve the equal performance, CCS needs less updating workload, compared with two
other counterparts. Note that the success rate decreases slightly with the increasing of moving rate. Thus, the

50 75 100 125 150
Number of CNs

25
20

70
65
60
55
50
45
40
35
30U

pd
at

in
g

tim
e

(s
)

 Cluster
DTCS
Gossip

100
90
80
70
60
50
40
30
20

Su
cc

es
s

ra
te

 u
pd

at
in

g
(%

)

50 75 100 125 150
Number of CNs

10
0

Cluster
DTCS
Gossip

谢高岗 等:MANET 中基于簇的缓存一致性维护策略 3051

2 6 10 14 18
Max speed of nodes (m/s)

1.0
0.5

4.5
4.0
3.5
3.0
2.5
2.0
1.5

W
or

kl
oa

d
of

 u
pd

at
in

g
(b

yt
e*

ho
ps

)

×107

number of nodes that receive the update data significantly decreases, which, in turn, causes the decreasing of
updating workload as shown in Fig.6(a).

Updating workload of cluster
Updating workload of DTCS
Updating workload of gossip

60

50

40

30

20

10 U
pd

at
in

g
tim

e
(s

)

0
2 6 10 14 18

Max speed of nodes (m/s)

 Cluster
DTCS
Gossip

10
90
80
70
60
50
40
30
20

Su
cc

es
s

ra
te

 u
pd

at
in

g
(%

)

10
0

2 6 10 14 18
Max speed of nodes (m/s)

Cluster
DTCS
Gossip

(a) Updating workload (b) Updating time (c) Success time

Fig.6 Effects of moving rate of nodes

4.4 Effects of network scale

Here the Scale of scene means that only the size of scene varies from 1km*1km to 3km×3km, at the sametime
denisity of nodes and CNs. Thus, as the scale increases, the number of CNs also increases. Figure 7 gives the
intuition that how the scale of scene affects the performance of a scheme. As the scale of scene grows, the updating
workload and the updating time increase linearly. At the same time the success rate drops linearly. In each scale of
scene, CCS seems to need the least workload to achieve the same performance as that in the other two schemes.

Note that the Success Rate decreases slightly with the increasing of network scale. This can be explained as
follows. First, because the density of nodes and CNs remain unchanged, the number of CNs increases. This
inevitably increases the length of the updating path. As the path length increases, the probability of failure increases.

10

9
8
7
6
5
4
3
2
1W

or
kl

oa
d

of
 u

pd
at

in
g

(b
yt

e*
ho

ps
)

×107

(a) Updating workload (b) Updating time (c) Success time

Fig.7 Effects of network scale

5 Conclusions

A consistency scheme of cooperative caching, called CCS, is proposed for MANET. In this scheme, all group
members are organized into several clusters. An updating tree is constructed dynamically for cluster headers with
Chord. UDIs can be transmitted along the updating tree and broadcasted in the clusters. The overhead of
maintaining the ring is slight since it is not necessary to justify the Chord ring with the dynamic topology due to the
roaming of nodes. The updated tree is computed from the ring referring to the routing information and released after

0
75/1*1 300/2*2 675/3*3

Scale of scene
(number of nodes/km*km)

 Updating workload of gossip
Updating workload of DTCS
Updating workload of cluster

80
70
60
50
40
30
20
10

0

U
pd

at
in

g
tim

e
(s

)

75/1*1 300/2*2 675/3*3
Scale of scene

(number of nodes/km*km)

Gossip
DTCS
Cluster

100
90
80
70
60
50
40
30
20
10

0Su
cc

es
s

ra
te

 u
pd

at
in

g
(%

)

75/1*1 300/2*2 675/3*3
Scale of scene

(number of nodes/km*km)

Gossip
DTCS
Cluster

3052 Journal of Software 软件学报 Vol.19, No.11, November 2008

the UDI transmission. The scheme can meet the characteristics of topology dynamic, mobility of node and energy
limitation. The results of simulation experiments with different settings show that the scheme can keep caches
consistent with less workload and higher success rate of updating.

References:
[1] Corson S, Macker J. Mobile ad hoc networking (MANET): Routing protocol performance issues and evaluation considerations.

RFC 2501, 1999.

[2] Huang E, Hu WJ, Crowcroft J, Wassell I. Towards commercial mobile ad hoc network applications: A radio dispatch system. In:

Proc. of the 6th ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing. Urbana-Champaign Illinois, 2005. 355−365.

[3] Mohapatra P, Li J, Gui C. QoS in mobile ad hoc networks. IEEE Wireless Communications Magazine, 2003,10(3):44−52.

[4] Yin LZ, Cao GH. Supporting cooperative caching in ad hoc network. IEEE Trans. on Mobile Computing, 2006,5(1):77−89.

[5] Cao JN, Zhang Y, Xie L, Cao GH. Consistency of cooperative caching in mobile peer-to-peer systems over MANET. In: Proc. of

the 25th IEEE Int’l Conf. on Distributed Computing Systems Workshops. 2005. 573−579.

[6] Datta A, Hauswirth M, Aberer K. Updates in highly unreliable, replicated peer-to-peer systems. In: Proc. of the IEEE ICDCS 2003.

2003. 76−85.

[7] Kahol A, Khurana S, Gupta SKS, Srimani PK. A strategy to manage cache consistency in a disconnected distributed mobile

wireless environment. IEEE Trans. on Parallel and Distributed Systems, 2001,12(7):686−700.

[8] Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H. Chord: A scalable peer-to-peer lookup service for Internet applications.

In: Proc. of the SIGCOMM 2001. 2001. 149−160.

[9] Yu JY, Chong PHJ. A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys and Tutorials,

2005,7(1):32−48.

[10] Yu JY, Chong PHJ. 3hBAC (3-hop between Adjacent clusterheads): A novel non-overlapping clustering algorithm for mobile ad

hoc networks. In: Proc. of the IEEE Pacrim 2003. 2003. 318−321.

[11] Xie GG, Li ZY, Chen JN, Wei YF, Issarny V, Conte A. DTCS: A dynamic tree-based consistency scheme of cooperative caching

in mobile ad hoc networks. In: Proc. of the IEEE WiMob 2007. 2007.

[12] Ganesh AJ, Kermarrec AM, Massoulie L. Peer-to-Peer membership management for gossip-based protocols. IEEE Trans. on

Computers, 2003,52(2):139−149.

[13] Homepage of ns2. 2007. http://nsnam.isi.edu/nsnam/index.php/Main_Page

[14] Perkins C, Belding-Royer E, Das S. Ad hoc on-demand distance vector (AODV) routing. RFC 3561, 2003.

XIE Gao-Gang was born in 1974. He is a
professor at the Institute of Computing
Technology, Chinese Academy of Sciences
and a CCF senior member. His research
areas are distributed and mobile
computing, network test and measurement.

 CHEN Jia-Ning was born in 1982. He is
currently working toward the MS degree at
the Hunan University and doing visiting
research in ICT. His research areas are
mobile computing and network simulation.

LI Zhen-Yu was born in 1980. He is
currently working toward the Ph.D. degree
at the Institute of Computing Technology,
Chinese Academy of Sciences. His
research areas are mobile computing and
P2P.

	1 Introduction
	2 CCS
	2.1 System model
	2.2 Clustering procedure
	2.3 Updating tree of header nodes
	2.3.1 Chord tree construction
	2.3.2 Updating tree construction and UDIs transmission

	2.4 Other issues in CCS
	2.4.1 Roaming of nodes
	2.4.2 Invalidation of nodes
	2.4.3 New nodes

	3 Theoretical Assessment of CCS
	3.1 Performance of CCS
	3.2 Performance metrics

	4 Simulation Experiment
	4.1 The simulation model
	4.2 Effects of number of CNs
	4.3 Effects of moving rate of nodes
	4.4 Effects of network scale

	5 Conclusions

