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Abstract: At Auscrypt’ 92, Harn and Yang first proposed the conception of (t,n) threshold undeniable signature,
in which only subsets with at least t members can represent a group to generate, confirm or disavow a signature.
Later, several schemes are proposed, but none of them is secure. So up to now, how to design a secure (t,n)
threshold undeniable signature scheme is remained an open problem. In this paper, based on discrete logarithm
cryptosystem, a secure and efficient (t,n) threshold undeniable signature scheme without a trusted party is presented.
This scheme has an attractive property that member’'s honesty is verifiable because a publicly verifiable secret
sharing scheme is used to distribute secrets and two discrete logarithm eguality protocols are used to provide
necessary proofs of correctness, which are proposed by Schoenmakers at Crypto’ 99.
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Undeniable signature is a special kind of digital signature with the appealing property that an alleged signature
cannot be checked without the cooperation of the signer. (t,n) threshold signature is one kind of group-oriented
signature, in which only the subsets with at least t members in a group U can generate a valid signature and any
verifier can simply verify an alleged signature if he/she knows the group public key of U. However, in a (t,n)
threshold undeniable signature scheme, any subset of t members out of n, denoted by Ug, can represent the group U
to generate a signature, but without the cooperation of t group members, a verifier cannot verify the validity of an
alleged signature even if he knows the group public key. At the same time, any subset of less than t members cannot
generate, confirm or disavow a signature even if they cooperate maliciously. Generally speaking, a threshold
undeniabl e signature scheme consists of the following three main sub-protocoals.

(1) Signing Protocol: t members in a subset Ug run this protocol to produce a valid signature for any message,
but any attacker | cannot forge a valid signature of group U with non-negligent possibility unless | has corrupted at
least t members or the group private key has been compromised to | (i.e., nonforgeability).

(2) Confirmation Protocol: By running this protocol between a subset Ug of t members in U, i.e. the prover,
and a verifier V, V is convinced that an alleged signature is indeed signed by U. Confirmation protocol should
satisfy the following three properties.

« Completeness: A valid signature of group U will always be accepted by V if all the membersin Ug and V are
honest (i.e. they properly act as the protocol described).

* Supported by the National Grand Fundamental Research 973 Program of China under Grant No.G1999035810 (
973 ); the National Natural Science Foundation of China under Grant N0.60083007 ( )
WANG Gui-lin was born in 1968. He is a Ph.D. candidate and an assistant professor at the Institute of Software, CAS. His research
interests include cryptography and information security. QING Si-han was born in 1939. He is a professor and doctoral supervisor at the
Institute of Software, CAS. His research interests are fundamental and application of information security.

© DEEREBAAAIFUN bt/ www. jos. org. cn



1758 Journal of Software 2002,13(9)

« Soundness: Even a cheating subset Ug cannot convince a verifier V to accept a non-valid signature of group U
with non-negligent possibility.

» Zero-Knowledge: On input a message and its valid signature, any possible cheating verifier V interacting with
a subset Ug does not learn any information aside from the validity of the signature.

(3) Denia Protocol: By running this protocol, prover Ug ensures a verifier V that an alleged signature is not
signed by group U. Denial protocol also should satisfy three similar properties as follows.

» Completeness: If all the membersin Ug and V are honest, a non-valid signature will always pass through the
denial protocol such that V believesthat it is not avalid signature of group U.

e Soundness. Even a cheating subset Ug cannot successfully deny a valid signature of U with non-negligent
possibility by running denial protocol.

» Zero-Knowledge: On input a message and a non-valid signature, any possible cheating verifier V interacting
with a subset Ug does not learn any information aside from the fact that this non-valid signature isin fact not a valid
signature of group U.

After the first undeniable scheme was proposed by Chaum and Antwerpen!¥, extensive investigations have
been studied to this special kind signature. Chaum presented a zero-knowledge undeniable signature scheme with
many useful applications®. By incorporating both concepts of the undeniable signature and group-oriented
signature®¥, Harn and Yang™ proposed the conception of (t,n) threshold undeniable signature and designed two
concrete schemes in respect of t=1 and t=n. But Langford® pointed out that their (n,n) threshold undeniable
signature scheme only possesses the security level of (2,n), because any two adjacent members can generate a valid
signature. Later, Lin et al. presented a general threshold undeniable signature scheme without a trusted party!”, but
their scheme is also subjected to the same attack. In 1999, Ref.[8] generalized Chaum’s zero-knowledge undeniable
signature? to a (t,n) threshold undeniable signature scheme, but this scheme has two shortcomings: (a) it needs the
help of atrusted party; (b) invalid partial signatures cannot be detected. All these threshold undeniable schemes are
based on discrete logarithm cryptosystems, but none of them is secure and does not need the help of atrusted party.
So up to now, the problem of designing a secure (t,n) threshold undeniable signature scheme without a trusted party
is remained open.

Based on the first undeniable RSA signature scheme!® and a revised version of Shoup’s practical threshold
RSA signature scheme!’®, Ref.[11] presented the first threshold undeniable RSA signature scheme with a trusted
party.

In this paper, based on discrete logarithm cryptosystem, we present a secure and efficient (t,n) threshold
undeniable signature scheme without a trusted party. Essentially speaking, our scheme is a generalization of the
Chaum and Antwerpen’s undeniable scheme!” to threshold environment. By making use of a publicly verifiable
secret sharing (PVSS) scheme, proposed by Schoenmakers?, and two non-interactive discrete logarithm equality
protocols, our scheme has an attractive property that each member’s honesty is verifiable in all the following stages:
distributing secrets, establishing group public key, generating signature, confirming and disavowing an alleged
threshold undeniable signature. We call these two non-interactive discrete logarithm equality protocols as DLE
protocol, proposed by Perderson and Chaum!®™*¥ and DDLE protocol, which is a modified version to a protocol
proposed by Stadler!™®.

This paper is organized as follows. Several notations are introduced in Section 1. Then, in Section 2, DLE and
DDLE protocols are reviewed concisely. Afterwards, the new threshold undeniable signature scheme is described in
Section 3. Finally, some brief discussions to our new scheme are given in Section 4.
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1 Notations

n members U; (i=1,2,...,n) consists of agroup U and t is the threshold value. Let B denote a subset of sizetin
the index set {1,2,...,n} and Ug={U;|ieB} be a subset of sizet in U. The notation xerX means that an element x is
selected randomly and uniformly from the set X.

g, p’ and p are three primes such that g|p'-1 and p|p'-1.G, is the unique multiplicative subgroup of order g in
finite field Z,, and G, is the unique multiplicative subgroup of order p' in finite field Z,.

Hi, H,, and H are three hash functions such that H,: {0,3* -»{0,1}' and H;: Z — Gy cZ,.Where, |l isa

security parameter (1 ~100). Then, for every original message M such that m=H;(M) =1, mis a generator of
group G, . Such special kind of hash function H, can be constructed as follows: after choosing a hash function

H': Z—Z, andagenerator gof G, ,wedefine H; as m=H;(M)=g"™ modp,vM eZ.

2 Discrete Logarithm Equality Protocols

Knowledge proving protocols, especially of which based on the discrete logarithm problems, are extensively
used in modern cryptography!*®. In this section, we will describe DLE and DDLE protocol briefly.

2.1 DLE (91,h1;02,hy; ) protocol
0:,9,,hy and h, are four public numbers such that g,,g, are two generators of group G, . The prover P
knows a secret number o eZ; such that logy hy =logg, h, =« , i.e. hy=g,"modp’ and h,=g," modp’. By

running the following DLE( g,,h;;9,,h,;a ) protocol, the prover P produces necessary proof to convince a verifier
V that he indeed knows the secret « but does not reveal whichisthe « .

() P randomly selects weg Z,,
r=w-acmodq. P publishesProof, = (r,c) asthe proof of knowing the secret « .

computes a, = g," modp’, a,=g9,"modp’, c=H,(a ||a,) and

(2) V determines whether P knows the secret « by checking ¢ = H, (g, h,° || 9, h,%).
The completeness of these protocols is obvious, and the soundness and zero-knowledge are consulted to
Refs.[13, 14].

2.2 DDLE (hy,A;hy,0,B; ) protocol

Stadler®™ designed a knowledge protocol to prove that a discrete logarithm is equal to a double discrete
logarithm. In this subsection, we present an improved version of Stadler’s protocol and call it as DDLE protocol.
This protocoal is constructed under the same frame of Stadler’s, but it reveals less information. Therefore, it is at
least as secure as Stadler’s original protocol. In addition, the structural format of proof is also different with Stadler’s.

Let hy, h, be two public generators of Gq (i.e. two elements of order g inZ ). Suppose that at most the prover
P knows the discrete logarithm logy, hy. g is a public generator of G, (i.e. an element of order p’ in Z,) such
that computing discrete logarithms to base g is difficult.

Now, suppose that the prover P knows a secret aeZ, such that two public numbers A and B satisfy
A=h"modp’ and B=g"™ modp. Then P can run the following DDLE(h;,A;h,,0,B;a) protocol to convince a
verifier V that he indeed knows such « but does not reveal which isthea.

(1) P first selects | random numbers w; eg Z, and computes the following 2| values:

a; =hY modp’, a;=g"% modp, i=12,...].
(2) Then P evaluates the following hash function value c as the challenge:
c=Ha(AlIBllagallaz|l- - llasillazill- - llaullaz) 1)

(3) P computes | responses: ri=wi—c; @ mod q (i=1,2,...1) where ¢; is the i-th bit of c.

(4) At last, P publishes the proof Proof,=(c,r,r»,...,r)

(5) When V want to check whether P knows the secret « he first computes a;; and ay; by using of Proof; :

ay =h"A* modp’, & =(g*"B)"™) modp. (2)
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Then, V checks whether equation (1) holds. If yes, he receives the knowledge proving of prover P; otherwise
rejectsiit.
Theorem 1. (Completeness of DDLE protocol) If the prover P and the verifier V al are honest, then V always
receives P's knowledge proving.
Proof. Because P is honest, so he selects | random numbers w; eg Z, such that
ay =h" modp’, a, =g™" modp. ©)
Then, P computes the challenge ¢ by Eq.(1) and the | responses r, by r, =w, —c,amodq. On the other hand, in
the above step (5), the verifier V computes a;; and a,; from Eq.(2) by using the proof (c,ry,r»,...,r;). Note that the
following equations hold:
a; =h," A% mod p’ = h" %" (h,")% mod p’ = h,"* mod p’;
a, = (g¥9B%)M™") mod p = g(@h“ """ mod p = g"" mod p, whetherc, = Oorc; =1.
It is known that V obtains the same values a;; and ay as P does (i.e. equation (3)). Therefore, V founds that equation
(1) holds, i.e. V always receives the knowledge proving of P if they run the DDLE protocol honestly.
About the soundness and zero-knowledge of DDLE protocol, similar discussions can be addressed as Ref.[15]
did.

3 Description of the Proposed Scheme

In this section, we present a threshold undeniable signature scheme based on discrete logarithm cryptosystem
without any trusted party. In the design of this scheme, we adopt the publicly verifiable secret sharing scheme
(simple denoted by PVSS), proposed by Schoenmakers in Ref.[12], to make our scheme satisfying the attractive
property that the honesty of each member is verifiable. More specially speaking, we use the DLE and DDLE
protocols described in last section to construct necessary proofs such that the operations of each member in all the
following phases are verifiable: group public key generation, secret distribution, threshold undeniable signature
generation, confirmation and denial.

Stage 1. System initialization

Group U selects the system public parameters p, p’,q, 9, «, 8, H5 such that:

(1-1) p, p’, andqarelargeprimessuchthat q|p’'-1 and p'|p-1.

(1-2) gisagenerator of order p’ infinitefield Z,.

(1-3) @ and B are two generators of order q in finite field Z, and nobody knows the discrete logarithm
log, # and log,; a. As Gennaro et al. pointed out in the Section 4.1 of Ref.[17], a generic distributed
coin flipping protocol will accomplish the generatingof « and fS.

(1-4) H; isahash functionfromZto G, (asdescribedin Section 1).

Stage 2. Secrets distribution
(2-1) Each member U; selects his private key x € Zg, then computes and registers the following t; as his
public key (t; is agenerator of Gy):
ti =a* mod p". 4
(2-2) Member U; randomly chooses a polynomial fi(x) with order at most t-1: fi(x)=zt:oaijxj € Z4[x],
where a; e Z,,.
(2-3) Member U; computesy; and Y; as follows:
yi=ai@modp’, Y, =g¥% modp.
U; signs'Y; and publishesit, but keeps f; (0) , i.e., a, and y; secretly.
(2-4) U, runs the PV SS protocol? to distribute the secret y;. Following is the procedure in detail.
In the first, U; publishes C;; as his commitment to each coefficient of the polynomial fi(x) and T as the
encrypted shadow sub-key for member U,:
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C,=p"modp, Vje{0L..t-3; T, =t modp, Vie{l2..n. (5)
Now, let

ajj -k

t-1 . t-1
X =]]Cl modp’ (= ,Bzi:" modp'= A% modp’). (6)
j=0

It is easy to see that every member can work out the values of X, by using the public information C;
(0<j<t-1).
Then, U; shows that all the encrypted shadow sub-keys T, (1<k<n) are consistent by constructing a proof of
knowledge of the unique f; (k) (1<k <n) satisfying:
log, Xy =log, Ty(=f(K), k=12..,n
For this seek, applying Fiat-Shamir's technique'®, U; selects n random numbers wi, e Z, to compute the
following values a, and a:
ay = S" mod p’, ay =t mod p’, k=12,..n.
And then U; compute the challenge c¢; asfollows:
G = Hy (Kig o I i 1T eI T @ Il 2 115 0110 (7)
Using the challenge ¢;, U; computesthe response r,, for member U, :
ri =W, — f(k)c,modg, k=12,..,n
Finally, U; constructs the knowledge proof as following:
Proof, =(C;,liy figyeen Iip)-
Each member can verify whether U; distributes secret honestly by checking the equality (7). Here is the reason.
By using the public information C;, X, ty, Ty, i and ¢;, he can work out the values a, and &, asfollows:
ay = B« X5 modp’, a =t T,7 mod p’, k=12,...,n
(2-5) Now, U; sends fi(k) to Uy secretly. Uy checks whether the following equality holds:
afi® =T modp'.
(2-6) If any member fails in above steps, then the total scheme aborts. Otherwise, all members in group U pass
through above steps without any dissent, then U; computes values f (i), X;,T; and S as follows:
fi)=Y, fc(iymodg;
X, =T, X mod p' (= fZ4+"") mod p' = 40 mod p); ©
T =[], T mod p’ (= tizzzlfk(i) mod p’=t"" mod p);
S =T mod p’ (= (t,"")* mod p’' =& '™ mod p’).
Here, S is the sub-key that U; gets. In addition, member U; publishes T; and X; publicly, but keeps § and f(i)
secretly.
Stage 3. Generation of the group public key
(3-1) Using the public information Y, (k=1 2,...,n), al n members in group U connect in a ring and run the
following RING1 protocol to generate the group public key Y as
Y = g¥¥2-¥ mod p=g¥ mod p. 9)
wherey=y,y,...y, mod p'isthe group private key and nobody knowsiit.

RING1(g,Vy,,Y;,Y) Protocol
For convenience, we assume these n members connect in the following order:
U=U,=>-U,=>U =>U,-=>U,=U,.
Step 1. U; uses Y, to sign a public message my agreed by group U as below (my can be selected as the identity
of group U or member U4, or anything else).
Y, = mg* mod p.
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And let Yo=g,Y, =Y modp (=Y, =g” modp). Now, U, runs DLE (m,,Yy;Y,,Y:;y:) protocol and

broadcasts (Y,,Y;, Proofy, ).

Step 2. By using (Y,,Y:, Proofy,), U, (and each member) checks whether log,, Y, =logy, Y, (=y;) . If not,
he declares this fact and stops running the protocol. Otherwise, U, first computes

Y, =V, mod p.

Then heruns DLE(9,Y,;Y:,Y,;y,) protocol, constructs proof and broadcasts (Y, Proofy, ) .

Step i (3<i<n). By using (Y4, Proofy, ,) , U; (and each member) checks whether log, Y, =
logg , Y., (=) . If not, he declares this fact and stops running the protocol. Otherwise, U; first
computes

Y; =Y., mod p.
Then herunsDLE (g,Y;;Y,1,Y;;y;) protocol, constructs proof and broadcasts (Y, Proofy, ).

Step n+l. By using (Y,, Proof,, ) , all members check whether log, Y, =logg Y. (=y,) . If yes, this
protocol outputs the following Y as the group public key:

Y =Y, =g¥2% modp = gY¥ modp.
(3-2) After the generation of Y, (p,p’,09,9,a,8,H;,H,,H3,Y,IDy,t;) can be submitted to a Certificate
Authority for getting a registered certificate of the group public key of group U.
Stage 4. Generation of threshold undeniable signature
If t membersin Ug want to sign message m, then each U; (i € B) does as follows.
(4-1) Each U (iB) first computes
Sk =S modp’ (=a’® mod p'). (10)
whereCg and f_(i) are defined respectively by
Ca= [] ——modg, and f(i)=Cyg - f(i)moda.
jeB\(i} J — I
(4-2) All these t members U; (ieB) connect in a ring and run the following RING2 protocol to generate
threshold undeniable signature z. For convenience, we assume that they are the first t members in group U
(i.e. B={1,2,...,1}) and connect in the following order:
Uu=uU,=-U,=>U =, -=U =U,.
RING2(m:t;, T :2,7_,,2;2) Protocol
Step 1. U; computes his partial signature z; as follows:
z, =m% modp (=m*'® mod p).
Then he runs DDLE (t,, T°®;a,m, z;; f_(l)) protocol and broadcasts (Proofy,,z). Each member can verify
whether log, (T ) =log, (log,, z) (= f(2).

Step i(2<i<t). When U; sees (Proofy, ,,z ), according to Egs.(2) and (1), he verify whether member
U,, generated z_, properly. If not, U; declares this fact and stops running the protocol. Otherwise,
U; computes his partial signature z :

z =2z% modp (=z*.” modp). (11)

Then he runs DDLE (t;,T.%* ;a,z ,,2; f (i) protocol and broadcasts (Proofy, ,z) . Each member can verify

whether log, (T, )=log, (log, , z) (= f(i)).

(4-3) If z isgenerated properly, then we define z=z as the threshold undeniable signature of group U on

message m. From above description, it is not difficult to see the following equation holds:

z2=2 = ml % mod p=mY mod p. (12)
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Stage 5. Confirmation of threshold undeniable signature
It is the goal of above RING2 (mt;,T,®;a,z_,2;2) protocol that t members U, (ieB) generate the
threshold undeniable signature z defined by equation (12). At the same time, each member runs the
DDLE(t;, T ;a,2_,,7; f(i)) protocol to generate necessary proof such that U;’'s neighbor Ui,; (and al other
members) can verify the validity of partial signature z . In our confirmation protocol, t members U; (ie B and
[B|=t) of U need to compute the following value R as the response to a challenge W provided by the verifier V:
R=WIlie®)" modp (=W mod p).

Note that every member can compute T,”°®

(St) =57 modp’ =" modp;

Ti7CB| :'[;CBi.f(i) mod p' :tiifi(i) mod p"

and that we have the following two equations

(13)

It is easy to know that these t members can compute the response R by running RING2 (W;t;, T, “® ;a,R_;,R;R)
protocol. Where, R, is defined by
R =R'$" modp (=(R.)* " modp), and R, =W.
Now, we present the confirmation protocol as below.
(5-1) Verifier V selects two random number a,beg Z,,, and sends the following W to all the t members
U (ieB):
W = z2Y? mod p. (14)
where (m, 2) is an alleged signature message pair and Y is the group public key of U.
(5-2) t members U, (ieB) connect in a ring to run RING2 (W;t;, T, “®;,R_;,R;R) protocol. If success,
they send the output Rto V.
(5-3) V accepts the signature (m, 2) if and only if the following equality holds:
R=m?g’ mod p. (15)
Stage 6. Denial of threshold undeniable signature
If verification Eg.(15) does not hold after V and t members have run the confirmation protocol, then they run
the following denial protocol to convince V that signature z is not signed by group U. Like the denia protocol in

Ref.[1], two successful denialsto an alleged signature (m, Z) serves as the denial protocol.
(6-1) By running the confirmation protocol with t members of group U for two times, V gets two triples (R, a,
b) and (R,a,b) , but any of them does not satisfy the verification Eq.(15). Then, verifier V believes that
(m, 2) isin fact not a signature of group U if and only if the following equality holds:

(Rg)% =(Rg~")2 mod p. (16)

4 Analysisof the Proposed Scheme

Now we briefly discuss the validity and security of our threshold undeniable signature scheme. In the first, it is
easy to know that our scheme is correct, i.e. if t honest members generate valid partial signatures, then the getting
undeniable signature will be passed through the confirmation protocol. In the second, we combine the Shamir’s
secret sharing scheme!™® and Schoenmakers' PV SS*? together to distribute secrets such that less than t members
cannot deduce the group private key and each member has to distribute secrets honestly otherwise his cheating
behavior will be detected. In the third, the group public key can be generated efficiently and securely by running
RINGL1 protocol because DLE protocol are employed to provide proof of correctness. In the last, each member has
to run DDLE protocol to produce necessary proof in all the following stages. generation, confirmation and denial of
athreshold undeniable signature. Any cheater in these stages will be detected.

Therefore, based on discrete logarithm cryptosystem, we have proposed a valid and secure threshold
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undeniable signature scheme without a trusted party.
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