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Abstract: In the paper, an estimation of distribution of linear complexities of generalized Legendre sequences
is made. It is discovered that most of the generalized Legendre sequences have large linear complexities. A way is
proposed to find the generalized Legendre sequence of the large linear complexity.
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The design for the key sequences with perfect performance is always the hotspot in the digital communication
and stream cipher stream cipher research. A good key sequence often has large linear complexity and strong
pseudorandomness. L egendre sequences look random with respect to elementary statistical tests and also quite good
from the linear complexity viewpoint!*?. About various statistical properties and linear complexities of the
Legendre sequences, we refer to Refs.[3~6] for detail. Recently, the so-called generalized Legendre sequence

S(p.R) isdefined and its linear complexity is discussed in Ref.[7], where R=r' isaprime power, pisaprime
such that R|p-1, and b isan arrangement of all elements in the finite field F; of order R. In Ref.[7], the linear

complexities of the sequences S,(p,R) are determined for the cases when R=3 and 4, and some partial results for

the cases when R=8 or an odd primer.
We introduce some notations and definitions. Let R=r" be a prime power and p a prime, where Rjp-1. Set b

be an arrangement of all elements of thefield F; written as:
b=(bgb...b...br1). Q)
Definition. Let g be a generator of the multiplicative group Fp* =F,\{G} of the field F,. The generalized
Legendre sequence, or the R-th residual sequence of period p, denoted by S, (p,R), is a sequence

(885 ) e Fy", where
{0 if i=0(mod p),

b, if i=g""™¥(mod p),0<j<R
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Fixing p and R, we simply denote S, ,(p,R) by S, .
Let S; bethe set of arrangements of all elements of F;. We discuss the transformations actingon S; . Let
4 be an integer such that ( ¢, R)=1. We definethe u -decimationof b as

b“ = (b, b, b,z 1), Where if j'= j(mod R), then b, =b,.
The transformation L*(b) = (b,b, 10, 40+, ;) is called the left shift of b. With the map x— X" acting on
each component of b, we get another transformation 5(b) = (b, 1y ---bz ;). By multiplying each component of b

witha e Fg, the transformation 6, (b) = (o, o, ---aby ;). Clearly, b*) ((r,u)=1),L%(b),6(b) and 6, (b) (a #0)
are still the arrangements over F;. Similarly, we can define the corresponding generalized Legendre sequences

Sb(,,),g , S(,.@Ig and so on.

About these sequences above, we have some lemmas as follows.
Lemma 1. Let 2 and x be two integers such that (1,p-D=1 and Ju=1modR). Then,

S

b,g*

= Sb(myg-

So, we can fix g and simply denote S, ; by S,

Lemma 2!, Sg(g}') =SS =% if €205, =5

About some invariable properties of linear complexity L(S)) of S, by Lemma 2, we get the following
results.
Corollary 114,

L L(S ) = L(S, ) = L(Sw) = L(S):

2. For any given arrangement b over Fg, there always exists an arrangement b'=(01b)---b; ;) such that
L(§) =L(Sy)

Then, we have the following:

Theorem 1. For any given arrangement b, let x=[{b'e §;|L(S,)=L(S,)}|. Then, tR(R-1)|x.

Proof. Let G be the transformation group generated by the transformations L, 6, and & acting on Sq
where « isagenerator of FR*. For any given arrangement b, denote the orbit of G actingon b by l_)G.

By Corollary 1, it is suffice to prove that tR(R-1) |pG |.Itis clear that L(6,(0)) =6, (L(0),L(5(b) =5(L(b))
and 56, (b)) =6,(5(b). So, any element in G is of form §'6,’L", where 0<i<t,0<j<R-10<k<R We
discuss the stabilizer G, of G fixing b. For any given arrangement b, there is an arrangement ¢ of form
(01*--*) in the orbit b®. Since c®=hb°, we can assume that b=(0lb,---by,). If &§'(8,' (L“(b)))=h, only
looking at the action of §i€aij on the first two components of b, we easily know that j=k=0. Since the
components of b contains al elements of Fg, i=0. Thus, |b®|IG|. If &80, 'L“=6"6, ¥, then

576, (L (b)) =b. Hence, i=i",j=| and k=K. So, |b°® =G |tR(R-1).Theresult holds.

Let Fp*R ={i"lieF,}=<g®>. The number r can be regarded as an element of Fp'/Fp*R under the
canonical map. We denote the order of i in the group Fp*/Fp*R by Ord y =() (or simply Ord(i)). Then, the
Fp /Fp

following conclusion is obvious.
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Lemma 3. Assume t=r"s, (r,s)=1 and
r=g" “®(mod p),1<réu<R(r,u)=10<c<t. 2

Then Ord(R)=r", whered=t-e, e= min{c+7,t}.
Lemma 41248 | et

K, ={i|S,(8)=00<i<pcF,, ®3)
where £ is an element of order p of the algebraic cIosureE, of F,. Then,
L(S) = p-1-[K,]. (4)

The values fj(ﬂi),OS j<RO<i<p, are considered in Refs[4,7], where f,(X)is defined as the following
polynomial
f,()= > x9"(mod x" -1), (5)

hs<gR>

where we view the power exponent g'h of x as the element in the multiplicative group Fp*.
In the rest of this paper, we fix 8 as an element of order pin Er.Then, by (5), f;(B) iswell defined.
Lemma5“™. Let b=(hyb---by,). Then,
1. Sg(x):zosj<ijfj(x) (mod xP -1).
2. f,(B™=1;(B"), forany he<g®>iecF,. Moreover, Do fi(B)=-1
3. §(B")=S,(8), forany he<gR>;su(ﬁg‘):ZOSRij%fJ(/}),OSMR;sg(l):o.
Forany 1<a<t, wedefine
Mya={9"1S,(8%)=0,0< 2 <r?}. (6)
Lemma6. Let Ord(R)=r® and e=t—d. Then,
K, = U g'<g" >.

gAA EMQ,E

In particular,

-1 i .
Ky 2 1My H My ' [My |V O <0

Then, L(S,)= prgl(re- M, D-

Proof. First we prove that for any ieK,, both igh and iRbelong to K,. By Lemma 5, Sg(ﬂigR):
S(8)=0. So, ig"eK,.Since
R
O—SM‘)R—[ 2 b,»f,-w‘)J = 2 BB = X T (A7) =S,(8),
O<T=R 0<j<R 0<j<R

iReK,. Hence, K, must be the union of some cosets of < R gf >=< gre > in Fp*. Since g is a generator of

F,, al these cosets are of the form g’<g” > where g'eM,,. So, K,= |J g’<g" > and

g}'eMbiye

9
ré -1
Ky < >y PR IM, .

Note that

Then,
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Mpeii = Mpeii N Ky = U gjre ‘M.
o<j<r'-1

p-1

re

Hence, M., [=r'|M,.|, forany O0<i<d.Then, L(S)= Myl

b,e+i

Then, by Lemma4 and Lemma 6, we have

Lemma 7. For any arrangement b, p—leL(SO), where e=t-d, Ord(R)=r°.
r b

In Ref.[4], Dai et al gave the linear complexities of some special generalized Legendre sequences S, where

b are a-natural arrangements.
We give further conclusions about the distribution of linear complexities of other generalized Legendre
sequences. Dais' result is mainly the following theorem:

Theorem A, Let R=r'>2 be a prime power and p an odd prime such that rft and R|p-1. Set

ord , L(r)=r". Then
5 /5,

P
1. If d=t, then for any arrangement b over F;, L(S)=p-1
2.1f 1<d<t, thenforany (t-d+1)-naturearrangement b over F,, L(S)=p-1

3. If d=0, then for any t-nature arrangement b, L(S,)= p—1—p?_1.

Of course, for other arrangements b, the corresponding sequences S, may have the small linear
complexities. However, with the help of computer, we discover that for most arrangements b, the corresponding

sequences S, havethe large linear complexities.
Let U={u=(u,--,u)|ueF}cF". Regard F;° as an addition group of vector space of dimension R
over F,. Then, U is regarded as a subgroup of F.f. For any beF",b+U ={b+ujueF.} isacoset of U in

FR.
We discuss the distribution of  L(S,,,) on b+U for any given arrangement b.

Lemma 8. For any given be F*,
YoMy <18, where e=t-d.

Proof.
Yo Mo = 2o [(118,,(87) = 0,02 4 < 19| = (A1) 1§,,, (8) =0,0< 2 <1%,ueU}

- ZOS/"KI'E{Q I SQ(IBQA)_U =Que FR} < ZOS}L<r91: re.

Lemma 9. For any given be F.F, let E, betheaveragevalueof L(S,,) on b+U. Then,

(P-D(R-D
=

E, >

Proof. Let Ord(R)=r%e=t—d. Then,
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— _ p_]_ e
EQ_IU IZueU (Su+u) I IZHEU e (r |Ml}+g,e |)
z%mre_re) (by Lemma 8)

R .

Theorem 2. Assume Ord(R)=r%,0<d<t. For any given arrangement b, let R, be the probability of
L(S,.,) =!I for ueU.

(1) If Ord(R)=1, then R, ,, + ;P >

N

(p-D-)
(2 If Ord(R)=r,0<d<t, then B, >1-—,

(3 If Ord(R)=r', then R, ,=1.

Proof. Let e=t-d. For any given arrangement b, denote x =|{u|lM i,ueU}|. By Lemma 6,

b+ue

{U | L(Smu) = ThUS
%
Pbp—(r 9 R @
By the definition of x and Lemma?7,
z % =R, (8
O<i<r®
By Lemma 8,
2% =2 My ST ©)
1<i<r® uey

If Ord(R)=1, r® = R By (8) and (9),
R=r'> Y i-x2x+2) %=%+2(R-%—X).

1<i<r® 1<i<r®
1 LN 1
S0, 2%, + % 2 R Then, Pb,p_l+§|=;(p_l)F§R_l):E ﬁ > (1) holds.
If Ord(R)=r?,0<d<t, by (8) and (9), r™*=> _ .i-x=2) . .Xx=R=%. S0, %==R-r"" Then,

Rpi= XRO >1_7 (2) holds.

By Theorem A, (3) holds.

Noting that the set of arrangements is the union of the above cosetslike b+U, we have

Corollary 2. For at least half of all of arrangements b, L(S,) ae at least &S{_”, Further, if

Ord(R)=r" with d>0, then the probability of L(S,) equal top-1lisat least 1—%.
° r

Remark. Besides the natural arrangements, there are more other arrangements such that the corresponding

seguences have large linear complexities. According to Theorem 2, one may find these sequences in the following
way':
For any given arrangement b, if the corresponding sequence has not large linear complexity, we can obtain

new arrangement b’ by adding u(eU) onto the arrangement b. After at most testing [g} arrangements, we

must find anew arrangement b’ suchthat S, hasthelinear complexity not less than &éR_D
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