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Abstract: In the paper, an estimation of distribution of linear complexities of generalized Legendre sequences 
is made. It is discovered that most of the generalized Legendre sequences have large linear complexities. A way is 
proposed to find the generalized Legendre sequence of the large linear complexity. 
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The design for the key sequences with perfect performance is always the hotspot in the digital communication 
and stream cipher stream cipher research. A good key sequence often has large linear complexity and strong 
pseudorandomness. Legendre sequences look random with respect to elementary statistical tests and also quite good 
from the linear complexity viewpoint[1,2]. About various statistical properties and linear complexities of the 
Legendre sequences, we refer to Refs.[3~6] for detail.  Recently, the so-called generalized Legendre sequence 

),( RpSb  is defined and its linear complexity is discussed in Ref.[7], where trR =  is a prime power,  p is a prime 

such that R|p-1,  and b  is an arrangement of all elements in the finite field  of order R. In Ref.[7], the linear 

complexities of the sequences 

RF

),( RpSb  are determined for the cases when R=3 and 4, and some partial results for 

the cases when R=8 or an odd prime r. 

We introduce some notations and definitions. Let trR =  be a prime power and p a prime, where R|p-1. Set b  

be an arrangement of all elements of the field  written as:  RF
       b =(b0b1…bj…bR−1).           (1) 

Definition. Let g be a generator of the multiplicative group of the field . The generalized 

Legendre sequence, or the R-th residual sequence of period p, denoted by 
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pp FF = pF

)R,(, pgbS , is a sequence 

, where ∞∈ Ri Fsss )( 10 ""

     

0    if  i 0(mod  ),                       
if  (mod  ),0 .j Rki

j

p
s

b i g p j+

≡=  R≡ ≤ <
 

                                                             

 Supported by the National Natural Science Foundation of China under Grant No.60173016 (国家自然科学基金); the National 

Grand Fundamental Research 973 Program of China under Grant No.G1999035804 (国家重点基础研究发展规划 973项目); Foundation 

of State Key Laboratory of Information Security (信息安全国家重点实验室对外开放基金) 
WANG Ping was born in 1972. He is a Ph.D. candidate at the State Key Laboratory of Informational Security, the Chinese 

Academy of Sciences. His research interests are algebras and applied mathematics. DAI Zong-duo was born in 1941. She is a professor 
and doctoral supervisor of the State Key Laboratory of Informational Security, the Chinese Academy of Sciences. Her current research 
areas are algebras and cryptograph. 

 



 王平 等:广义 Legendre序列线性复杂度的分布 1369 

Fixing p and R, we simply denote ),(, RpS gb  by .  ,gbS

Let  be the set of arrangements of all elements of  We discuss the transformations acting on . Let RS .RF RS
µ be an integer such that ( R,µ )=1. We define the µ -decimation of b  as  

( )
0  ( 1)( ),    where  if  (mod  ),   then  .j R jb b b b b j j R b bµ

µ µ µ ′− ′= ≡" " j=  

The transformation )()( 1011 −−+= λλλ
λ bbbbbbL p ""  is called the left shift of b . With the map  acting on 

each component of 

rxx →

b , we get another transformation ).()( 110
r

R
rr bbbb −= "δ  By multiplying each component of b  

with ,RF∈α  the transformation ).   ()( 110 −= Rbbbb αααθα "  Clearly, ( ) ( ( , ) 1 ), ( ), ( )L bµ λµ δ=b r and b )0(  ) ≠( αθα b  
are still the arrangements over  Similarly, we can define the corresponding generalized Legendre sequences .RF

gbg
S ),(,

,) δb
S (µ  and so on. 

About these sequences above, we have some lemmas as follows. 
Lemma 1[4].  Let λ  and µ  be two integers such that 1)1,( =−pλ  and ).(mod1 R ≡λµ  Then, 

.
,, )( gbgb

SS µλ =  

So, we can fix g and simply denote gbS ,  by .bS  

Lemma 2[4]. .,0  if  , )()()(
)( r

bbbbbL
g

b SSSSSS =≠== δθ αα
αλ

λ
 

About some invariable properties of linear complexity )( bSL  of ,bS  by Lemma 2, we get the following 
results. 

Corollary 1[4]. 

1. ).()()()( )()()( bbbbL
SLSLSLSL === δθαλ  

2. For any given arrangement b  over  there always exists an arrangement ,RF 2(01 )Rb b b −1′ ′ ′= "  such that 

).()( bb SLSL ′=  

Then, we have the following: 

Theorem 1. For any given arrangement ,b  let .|)}()(|{| bbR SLSLSbx =∈′= ′  Then, tR(R-1)|x. 

Proof. Let G be the transformation group generated by the transformations L, αθ  and δ  acting on  

where 
RS

α  is a generator of  For any given arrangement .*
RF ,  denote the orbit of G acting on b b  by Gb .  

By Corollary 1, it is suffice to prove that . It is clear that ||)1( GbR-tR ))(())(()),(())(( bLbLbLbL δδθθ αα ==  

and )).(())(( bb δθθδ αα =  So, any element in G is of form  where ,kji Lαθδ .0,10,0 RkRjti <≤−<≤<≤  We 

discuss the stabilizer bG  of G fixing .b  For any given arrangement ,b  there is an arrangement c  of form 

 in the orbit *)*01( " Gb . Since ,GG bc =  we can assume that ).01( 12 −= Rbb "b  If ,((( bbLkji
αθδ ))) =  only 

looking at the action of  on the first two components of kji Lαθδ ,b  we easily know that j=k=0. Since the 

components of b  contains all elements of  i=0. Thus, ,RF .||| GG =|  If  then b ,ikji L ′′= αα θδθδ kj L′

.)))(( bbL kk =′−( jjii ′−′−
αθδ  Hence, jjii ′=′= ,  and .kk ′=  So, ).1(|| −= RtRbG |=G| The result holds.  

 

Let  The number r can be regarded as an element of  under the 

canonical map. We denote the order of i in the group  by  (or simply Ord(i)). Then, the 

following conclusion is obvious. 
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Lemma 3[4]. Assume  and  1),(  , == srsrt τ

c
.0,1),(,),1 (mod tcrRrpgr cRkr ≤≤=≤≤≡ + µµµ       (2) 

Then  where d=t-e, e=,)Ord( drR = }.,min{ tc τ+  
Lemma 4[2,4,8]. Let  

,}0,0)(|{ *
p

i
bb FpiSiK ⊆<≤== β        (3) 

where β is an element of order p of the algebraic closure rF of  Then, .rF
.||1)( bb KpSL −−=          (4) 

The values  are considered in Refs.[4,7], where is defined as the following 
polynomial 

,0,0),( piRjf i
j <≤<≤β )(xf j

∑
>∈<

−=
R

j

gh

phg
j xxxf ),1 (mod)(         (5) 

where we view the power exponent  of x as the element in the multiplicative group  hg j .*
pF

In the rest of this paper, we fix β as an element of order p in rF . Then, by (5), )(βjf  is well defined. 

Lemma 5[4,7]. Let ).( 110 −= Rbbbb "  Then, 
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Lemma 6. Let ( ) dOrd R r=  and .e t d= −  Then,  
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In particular, 
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Then, ,
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Proof.  First we prove that for any ,bi K∈  both Rig  and belong to iR .bK  By Lemma 5, ( )
Rig

bS β =  

( ) 0.i
bS β =  So, .R

big K∈ Since  

0 0 0
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.biR K∈  Hence, bK  must be the union of some cosets of ,
eR rR g g< >=< >  in .*

pF  Since g is a generator of 

*,pF all these cosets are of the form  where 
erg gλ < > , .b eg Mλ ∈  So, 
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Hence, ,| | |i
b e i b eM r M+ = , |,  for any Then, 0 .i d≤ ≤ ,

1( ) | | .b be
pL S M
r
−

= e  

 
Then, by Lemma 4 and Lemma 6, we have 

Lemma 7. For any arrangement 1,   ( ),| be
pb L S
r
−  where .  ,  ( ) de t d Ord R r= − =

In Ref.[4], Dai et al gave the linear complexities of some special generalized Legendre sequences bS  where 

b  are a-natural arrangements. 

We give further conclusions about the distribution of linear complexities of other generalized Legendre 
sequences. Dais' result is mainly the following theorem: 

Theorem A[4]. Let 2tR r= >  be a prime power and p an odd prime such that |r t  and  Set | 1.R p −

* *
( ) .R

p p

t

F F
Ord r r=  Then 

1. If d=t, then for any arrangement b  over ,RF  ( ) 1bL S p .= −  

2. If  then for any 1 ,d t≤ < ( 1)t d− + − nature arrangement b  over ,RF  ( ) 1.bL S p= −  

3. If d=0, then for any t-nature arrangement ,b  1( ) 1 .b
pL S p

R
−

= − −  

Of course, for other arrangements ,b  the corresponding sequences bS  may have the small linear 

complexities. However, with the help of computer, we discover that for most arrangements ,b  the corresponding 

sequences bS  have the large linear complexities. 

Let { ( , , ) | } .R
R RU u u u u F F= = ∈ ⊆"  Regard R

RF  as an addition group of vector space of dimension R 

over RF . Then, U is regarded as a subgroup of .R
RF  For any , { |R }R Rb U b u u F∈ + = + ∈b F  is a coset of U in 

.R
RF  

We discuss the distribution of ( b uL S + )  on b U+  for any given arrangement .b  

Lemma 8. For any given ,R
Rb F∈   

,| | e
b u eu U

,M r+∈
≤∑  where e=t-d. 

Proof. 
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Lemma 9. For any given ,R
Rb F∈  let bE  be the average value of ( b uL S + )  on .Ub +  Then,  

( 1)( 1) .b
p RE

R
− −

≥  

Proof.  Let Or ( ) , .dd R r e t d= = −  Then,  
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,
1 1 1( ) ( | |

| | | |
1    ( )                             (by Lemma 8)

( 1)( 1)    = .
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Theorem 2. Assume Or ( ) ,0 .dd R r d t= ≤ ≤  For any given arrangement ,b  let ,b lP  be the probability of 

( )b uL S + = l  for .U∈u  

(1) If Ord(R)=1, then , 1 ( 1)( 1),

1 1 .
2 2b p p Rb

R

P P− − −+ ≥  

(2) If  then ( ) ,0 ,dOrd R r d t= < < , 1
11 ,b p dP
r− ≥ −  

(3) If  then ( ) ,tOrd R r= , 1 1.b pP − =  

Proof. Let e=t-d. For any given arrangement ,b  denote ,| { || | , } | .i b u ex u M i u U+= = ∈  By Lemma 6, 
1{ | ( ) ( ), } .e

i b u e
px u L S r i u U
r+
−
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1, ( )e
e

i
pb r i
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=                                          (7) 

By the definition of ix  and Lemma 7,  

0

,
e

i
i r

x R
≤ <

=∑                                            (8) 

By Lemma 8, 

,
1
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e

e
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⋅ = ≤ .∑ ∑                                     (9) 

If Ord(R)=1, . By (8) and (9), er R=

1 1 0
1 1

2 2(
e e

t
i i

i r i r
1).R r i x x x x R x

≤ < < <

= ≥ ⋅ ≥ + = + − − x∑ ∑  

So, 0 12 .x x R+ ≥  Then, 0 1
, 1 ( 1)( 1),

1 1 .
2 2b p p Rb

R

x xP P
R R− − − 2

+ = + ≥  (1) holds. 

If  by (8) and (9), ( ) ,0 ,dOrd R r d t= < < 01 1 .e e
t d

i ii r i rr i x x R−
≤ < ≤ <

≥ ⋅ ≥ = − x∑ ∑  So, 0 .t dx R r −≥ − Then, 

0 11 .d
x

, 1b pP
R r

= ≥ −−  (2) holds. 

By Theorem A, (3) holds.  

Noting that the set of arrangements is the union of the above cosets like ,b U+  we have 

Corollary 2. For at least half of all of arrangements b , ( )bL S  are at least ( 1)( 1) .p R
R

− −  Further, if 

 with  then the probability of ( ) dOrd R r= 0,d > ( )bL S  equal to p-1 is at least 11 .dr
−  

Remark. Besides the natural arrangements, there are more other arrangements such that the corresponding 
sequences have large linear complexities. According to Theorem 2, one may find these sequences in the following 
way: 

For any given arrangement b , if the corresponding sequence has not large linear complexity, we can obtain 

new arrangement b′  by adding (u U )∈  onto the arrangement b . After at most testing 
2
R 
  

 arrangements, we 

must find a new arrangement b′  such that bS ′  has the linear complexity not less than ( 1)( 1)p R
R

− − .  
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广义 Legendre序列线性复杂度的分布 

王  平,  戴宗铎 

(中国科学院 研究生院 信息安全国家重点实验室,北京  100039) 

摘要: 对广义 Legendre 序列线性复杂度的分布进行了估计,发现绝大多数广义 Legendre 序列有大的线性复杂
度.给出了一个方法以得到具有大线性复杂度的广义 Legendre序列. 
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