
 Vol.13, No.6 ©2002 Journal of Software 软 件 学 报 1000-9825/2002/13(06)1040-10

Prediction for Visiting Path on Web

HAN Jing1, ZHANG Hong-jiang2, CAI Qing-sheng1
1(Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China);
2(Media-Computing Group, Microsoft Research Asia, Beijing 100080, China)
E-mail: hanjing@mail.ustc.edu.cn
http://www.ustc.edu.cn
Received December 20, 2000; accepted September 24, 2001

Abstract: When Internet users are browsing the Web, they always have to wait for the next page to come up
after selecting the link to the page, even though the Web server is sometimes idle. To reduce the perceived response
time, the server is required to predict users’ next HTTP request and pre-process the Web page with remaining CPU
resources. This paper introduces various methods to predict users’ next HTTP request using classified Web page
information, user profiles, and Web logs. Sixteen algorithms and methods are analyzed and compared in this paper.
Experimental results show that some methods produce highly probable results with the user of user profiles and
classified Web page information.
Key words: Web page; http request; prediction; user profile

When the first World Wide Web site came online, the entirety of the content handled by Hypertext Transfer
Protocol (HTTP) servers was static. Due to factors such as network speed, server load, and the dynamic nature of
the content, after users click a link, they always have to spend a certain amount of time waiting for the next page to
come up. Some current efforts to resolve this issue are: caching at the server and client to reduce the latencies of
user requests, putting an additional layer of cache — proxy between the client and server, increasing the speed of
dynamic content generators, etc. However, there is a limit to the amount by which these techniques can decrease the
perceived response time, as it requires the server to wait for a user's request before it starts the process. Moreover,
Webmasters often use the following rule of thumb to ensure that HTTP server performance will not degrade when
network traffic is heaviest — provide twice the server capacity required to handle a site's average load. As a result
the server spends half of its CPU cycles idle waiting for a request[1]. If a Web server can predict the next HTTP
request from a user in its idle state, it can then pre-process (pre-generate and pre-fetch) dynamic content before a
user makes the request. This will reduce the latency of requests that are predicted correctly. Since every prediction
costs CPU resources on the Web server, this paper tries to decrease the cost in the following ways: use simple
algorithms for prediction, and move as much work (such as studying the logs) as possible to midnight when the
server is not busy. On the other hand, pre-fetching will increase the load on the Web server and occupy some
bandwidth, so accuracy is very important. To avoid this side effect, server will not pre-fetch during network rush

 This research was done in Microsoft Research Asia, Beijing 100080. Supported partly by the National Natural Science Foundation
of China under Grant No.70171052 (国家自然科学基金)

HAN Jing was born in 1974. She is a Ph.D. candidate at the Department of Computer Science, USTC. Her current research
interests are machine learning, agent, artificial life and CSPs. ZHANG Hong-jiang was born in 1960. He is the Vice-Dean of Microsoft
Research China, leader of Media-Computing group in Microsoft Research China. He is the senior member of IEEE and ACM. He has
published 2 books, more than 70 papers and owns 14 patents. CAI Qing-sheng was born in 1938. He is a professor and Ph.D. supervisor
in the AI Laboratory of USTC. His research interests include artificial intelligence, machine learning and knowledge discovery.

 韩靖 等:网站浏览路径预测 1041

hours.
There have been several attempts at predicting HTTP requests. One attempt is to focus on pre-fetching images

that are referenced in HTML documents (http://shika.aist-nara.ac.jp/products/wcol/). Stuart[1] predicts the user’s
next request entirely based on logs of paths the user has visited and point profiles, but ignores some useful
information about the Web page content and user’s personal preference. Other related pieces of work are
recommendation systems, collaborative filtering and user clustering.
 Recommendation systems are somewhat like prediction systems, but totally different in nature. A
recommendation system finds the best choice for the current user while a prediction system finds the most probable
choice. The former will affect the user’s browsing behavior but the latter will not. When a recommendation system
predicts the next best link, it will tell the user to follow it. In some cases, the user is willing to accept the
recommendation although he/she in fact has had different ideas in mind. Therefore, it can be concluded that the
accuracy of prediction system is lower than the recommendation system. Prediction is more difficult. There are
many examples of recommendation systems: WebWatcher by CMU (http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-6/web-agent/www/project-home.html), Syskill & Webert by UCI (http://www.ics.uci.edu/~pazzani/
Publications/Publications.html), Letizia and Let’s Browse by MIT (http://lieber.www.media.mit.edu/people/
lieber/Lieberary/Letizia/Letizia.html), Fab by Stanford (http://rsv.ricoh.com/~marko/), Softbots by Washington
University (http://www.cs.washington.edu/research/projects/softbots/www/projects.html), WBI by IBM (http://
www.almaden.ibm.com/cs/wbi/).

Most of the above systems use Collaborative Filtering[2] techniques. There are two kind of systems:
memory-based and model-based. A memory-based system uses past records to predict the active user’s vote. Two
kinds of methods are used for the prediction: one is called correlation, and the other is called vector similarity. A
model-based system tries to build a prediction model, such as a Clustering Model or a Bayesian Network Model. A
clustering model provided by Microsoft Research[3] to cluster users in our experiments. It turns out that 70% of the
users are clustered into one group, so this model is not suitable for this problem.

In this paper we focus on using classified Web page information and user preference to make a prediction. The
cost of classifying Web pages is one-off and it is not necessary to classify for every prediction, so this cost can be
ignored in the cost of prediction. The problem is that it is not easy to get users’ profiles if they are visiting a general
Web site. Only for professional Web sites are users required to provide their profiles. To solve this problem, we try
to use the Web logs to rebuild the user vector in Section 2.4.2. The experimental result in section 4 shows that the
prediction accuracy will not vary much.

Given some classified Web pages, some users’ profiles and their Web logs, we try to predict a new user’s
highly probable next HTTP request. This paper analyzes 16 simple algorithms and methods. We then compare these
16 algorithms and methods and find that link-based algorithms and combined methods are the most efficient.

The problem is defined in Section 1. The 16 algorithms and methods for prediction are analyzed in Section 2.
The experimental setup, results and analysis are presented in Section 3. Conclusions and future work are presented
in Section 4.

1 Problem Definition

A smart Web server should have the ability to assist users while they are browsing. To implement this
assistance ability, we can put a proxy between the Web server and the user. A Web server with a proxy that can
provide assistance to users is called a smart server. In this paper, the prediction functionality is implemented in a
proxy on the server’s side (See Fig.1.). We classify Web pages into n basic types according to the nature of their
contents. On the other hand, user profile is known to a certain degree. The proxy holds the classified information of

 Journal of Software 软件学报 2002,13(6)

1042

Web pages, the current user’s profile and the Web logs.
After studying past user profiles and the corresponding
Web logs, the proxy is able to build a prediction model
to predict other new users’ browsing paths.

User1 User2 Usern

The problem can be defined as the following:
Given: Prediction

(Proxy) 1. User profiles for their preference; WWW
Web 2. Classified information of Web pages;

3. Some Web logs;
Goal:
Through the study of some training data (past user

profiles and their Web logs), predict a new user’s next
HTTP request (see Fig.2.).

Fig.1 Architecture of smart Web server

In this paper, we build a mathematical model for this problem using vectors.
a) Web site: A directional graph. Each node p of the graph represents a Web page (see Fig.3). There is a

directional edge l(p1,p2) from node p1 to node p2 if there exists a hyperlink from page p1 to page p2.

p4

p2

Fig.2 User is reading page p1, next
HTTP request: Link1? Link2? Link3?

p3

Link1

Link2

Link3
p1

l(p3, p6)
l(p6, p3)

l(p4, p5)
l(p5, p4)

l(p1, p4)

l(p1, p2) p3

l(p1, p3)

p5

p2 p6l(p2, p6)
l(p6, p2)

p4
p1

l(p3, p5)

Fig.3 Graph for a simple Web site

b) Web page: Suppose there are n basic types of contents. So a page can be described as an n-dimension vector
P=(r1,r2,…,rn), with each bit (ri=0/1) of the vector representing the corresponding type (See Fig.4). For example,
suppose there are 4 basic types of contents: news, computer, music, and sports. If the content of a page is about
news and computer, it can be represented as a vector of P=‘1100’.

2 0U

2: means the user loves to read news

1: means the user sometimes reads news

0: means the user seldom reads news

news computer music sports

 1 1P

1: means this page is about news

0: means this page is not about news

news computer music sports

Fig.4 Page vector Fig.5 User vector

c) User: Suppose there are m (m is always equal to n) basic types of user preferences. A user can be described
as an m-dimensional vector U=(m1,m2,…,mm), with each bit (mi=0/1/2) of the vector representing the degree of
interest in the corresponding type of content (See Fig.5). For example (using the above assumption), if the user

 韩靖 等:网站浏览路径预测 1043

loves to read news and is willing to read music pages, but has no interest in computer and sports, he can be
represented as a vector U=‘2010’.

d) Hyperlink: l(p1,p2) is a hyperlink from page p1 to page p2, like the Web page vector, we can define a link
vector L to represent the hyperlink. (We call p1 ‘link-from page’ and p2 ‘link-to page’ in this paper.) However, there
are always only a few words underlined that describe a hyperlink. Furthermore, words underlined that describe a
hyperlink are always very simple, such as ‘Next page’, ‘>> More’, ‘Return’, ‘Important’, ‘What’s new’, etc. It is too
difficult to know what exact type of link is from those underlined words. So retrieving the link vector from
underlined words is not as simple as retrieving the page vector from page content. Even though we can retrieve the
link vector from the vector of page that is linked to, some effect of link vector in prediction will be lost since it is
the same as page vector. Because vectors of two different links with same link-to page, l1(p1,p3) and l2(p2,p3), should
be different. But the link vectors will be the same if they are retrieved by the link-to page p3. So we must find other
ways to retrieve the link vector which can fit the prediction problem. In Section 2, we will discuss this problem.

e) Visited (u,p), Visited (u,l): In the Web logs, if the user u has ever visited page p or link l, the function
Visited(u,p) or Visited(u,l) will return 1; otherwise 0.

2 Algorithms and Methods
The basic idea of the prediction algorithm is: compute a score for each link on the current page being read, and

select the link with the maximum score. The score for each link is computed based on the current user’s profile, the
current user’s history (Web logs for pages the user has visited during this time of browse), the classified information
of the current page (vector of the current page), and some training data (past user profiles and their Web logs). We
can define a function ϕ for computing a score for a link:

ϕ(Ux,Lm(Pi,Pj),Wx,M):{U}×{L}×{W}×{M}→[0,1].
Ux is the current user vector. Pi is the current page being read. Lm∈ϑi, ϑi is a set containing vectors of all links on
page pi. Pj∈Γi, Γi is a set containing link-to-page vectors for all links from page pi. Wx is the history vector for user
Ux, which are Web logs of this time of browse. M is a knowledge model which is extracted from the training data.
ϕ(Ux,Lm(Pi,Pj),Wx,M) returns a score for link Lm which is from current page pi to pj for user Ux. The prediction result
can be defined as

ξ: {U}×[1,n]→{l},
where n is the total number of pages. ξ(Ux,i) always returns a link on page pi depending on scores computed by the ϕ
function:

ξ(Ux,i)=ly, such that ∀Lu∈ϑi, ϕ(Ux,Ly,Wx,M)≥ϕ(Ux,Lu,Wx,M).
In the following section, we will introduce 16 prediction algorithms and methods. We classify them into five

groups: Simple Algorithms, Page-Based Algorithms, Link-Based Algorithms, User-Based Algorithms, and Combined
Methods. The first 4 groups are called pure algorithms. All the algorithms and methods will compute the score for
each link using different methods and/or select a link in different ways, that is to say, function ϕ and (or) ξ are
different. In section 2.6, we will analyze the computational complexity for each algorithm and method.

2.1 Simple algorithms (for comparison purpose only)

2.1.1 Random (RD)
Score for each link is randomly produced and the system chooses the link with the maximum score as the

prediction result.
ϕ-RD(Ux,Lm(Pi,Pj),Wx,M)=random(0,1), where random(0,1) returns a value between 0 and 1 at random.

Apparently, this algorithm is bad in performance, but easy to implement.
2.1.2 Similarity between user and page (SS)

Another obvious way is to compute the similarity between the current user vector Ux and the link-to-page
vector Pj by Cosine (Ux,Pj), and then choose the link whose link-to-page vector resembles the current user vector

 1044 Journal of Software 软件学报 2002,13(6)

the most.
ϕ-SS(Ux,Lm(Pi,Pj),Wx,M)=Cosine(Ux,Pj),

where Cosine(V1,V2)=V1·V2/|V1||V2|= j∑ (vlj v2j)/ 2 2
1 2k kk k

V V∑ ∑ .

This algorithm seems reasonable since a user who likes sports will most likely click the link to a sports page.
However, the experiment shows that is not the case. Because the user can never give a clear profile for his/her real
preference, and pages always contain more than one kind of content, the user’s choice will be affected.

2.2 Page-Based algorithms

In order to predict the next HTTP request, that is to say, predict which page the user will read next, we can
focus on linked-to pages for each link in the current page. In this section we will introduce some algorithms based
on linked-to pages.
2.2.1 Visited page counter (PC)

Users will read very attractive pages no matter what kind of content these pages have. A user who is bored with
music may read sports pages to learn how many gold medals the Chinese team has won in the Olympic Games. So
the more popular the page is, the greater reading probability is. Therefore, we can count how many people have read
each page and select a link to a popular page as the prediction result.

Pop (Pj,M)=ϕ-PC(Ux,Lm(Pi,Pj),Wx,M)=∑U k∈M Visited(uk,pj)
Pop function is always used in combination with other algorithms since it uses only one kind of information. Used
alone, this algorithm is bad in performance, but it can be used as a weight (WGT) to improve the performance of
other algorithms.
2.2.2 Page vector rebuild-group page by grouped users (PV)

It is tedious to classify pages and retrieve page vectors. Neither by man nor by computer can pages be
classified perfectly. Since the system has user profiles, vectors of users who have read page p can be used to rebuild
vector P:

P′=∑U k∈MUk×Visited(uk, p).

We can then use algorithm 3.1.2 to make the prediction:

ϕ-PV(Ux,i,Pj,Lm,Wx,M)=Cosine(Ux,Pj′)=Cosine(Ux,∑U k∈MUk×Visited(uk, pi)),
or if we consider the popularity of the page:

ϕ-PV(Ux,i,Pj,M)=Cosine(Ux,Pj′)×Pop(Pj,M).
2.2.3 Page neighborhood (PN)

If page p1 is similar to p2, the user who has read p1 will probably also read p2. This idea inspires another
algorithm: compute the similarity between each linked-to page and pages the current user has read, and then select
the one with the most similarity as the prediction result.

ϕ-PN(Ux,Lm(Pi,Pj),Wx,M)=∑P k∈WxCosine(Pk,Pj)×Visited (ux,pk).

2.3 Link-Based algorithms

Unfortunately, the underlined words designating a link do not really tell the user what kind of content the next
page contains, not to mention these words can sometimes be misleading. Since all we want to know is which link on
the current page the user will follow, the prediction can be made by considering the information of links. This
approach is more straight-forward and accurate than considering linked-to pages.
2.3.1 Visited link counter (LC)

Obviously, we can count the number of hits for each link just as what we did in Section 2.2.1.
Pop(Lm,M)=ϕ-LC(Ux,Lm(Pi,Pj),Wx,M)=∑U k∈M Visited(uk,lm).

 韩靖 等:网站浏览路径预测 1045

2.3.2 Link vector-group link by grouped user (LV)
Recall in the mathematical model of Section 1 we discussed the difficulty in retrieving a link vector. It is not a

good idea to assign the value of from-to page vector to the link vector. Since user vectors are available, we can get
the link vector from vectors of users who have clicked the link before:

L=∑U k∈M Uk×Visited (uk,l).
Then we can compute the similarity between the current user vector and each link vector, and then select the link
with the most similarity as the prediction result.

ϕ-LV(Ux,Lm(Pi,Pj),Wx,M)=Cosine(Ux,Lm)=Cosine(Ux,∑U k∈MUk×Visited(uk,lm)),
or if we consider the popularity of the page:

ϕ-LV(Ux,Lm(Pi, Pj),Wx,M)=Cosine(Ux,Lm)×Pop (Pj, M).
The experiment shows this algorithm is the most efficient among singular algorithms.
2.3.3 Link neighborhood (LN)

Similar to the Page Neighborhood Algorithm, if link l1 is similar to l2, and the user has clicked l1, he/she will
probably also click l2. Therefore, we can first get the link vectors using user vectors as mentioned in Section 2.3.2,
and then compute the similarity between each link and links the current user has clicked.

ϕ-LN(Ux,Lm(Pi,Pj),Wx,M)=∑L k∈WxCosine(Lk,Lm)×Visited(ux,lk).

2.4 User-Based algorithms

As mentioned above, user profiles do not always reflect what the user really wants while he/she is browsing the
Web. One reason is that it is impossible to get an exact profile and the user is tired of giving a detailed profile
before browsing. The other reason is that there are more factors other than personal preference which affects the
user’s browsing pattern, and the user’s browsing pattern will change. In this part, we will introduce some user-based
algorithms.
2.4.1 User mapping (UM)

Given the user vector, the user’s browsing behavior is not always in accordance with the preference described
by this vector on all Web sites. Here we try to use the past Web logs to map the user vector to another space which
is more related to the current Web site. We first extract a matrix from the past Web logs M, and then get a new
vector by mapping:

Matrix=∑ U k,P j ∈M Uk·Pj×Visited (uk, pj),

U′=U·Matrix.
We then take new vector U′ instead of U to make prediction using page-based algorithms and link-based algorithms.
Experiments show that accuracy increases in page-based algorithms but decreases in link-based algorithms.
2.4.2 User vector rebuild-group user by grouped pages/links (UVP/UVL)

Since the user profile does not always reflect what the user really wants, we can rebuild the user vector with
his/her visiting history W and then use it to make prediction. A user vector built from page vectors is called UVP,
and a user vector built from link vectors is called UVL.

 U′=∑Pi∈WPi×Visited(u,pi) ------ UVP
or U′=∑Li∈MLi×Visited(u,li) ------ UVL

ϕ-UVP(Ux,Lm(Pi,Pj),Wx,M)=Cosine(Ux,Pj)×Pop(Pj,M)
2.4.3 User neighborhood (UNP/UNL)

If user vector u1 is similar to u2, user u2 will probably select link l or page p if u1 has selected l or p. Based on
this assumption, we can calculate

ϕ-UN(Ux,Lm(Pi,Pj),Wx,M)=∑U k,Pj∈MCosine(Ux,Uk)×Visited(Uk,Pj) ----- UNP

 1046 Journal of Software 软件学报 2002,13(6)

or ϕ-UN (Ux,Lm(Pi,Pj),Wx,M)=∑Uk,L j∈MCosine(Ux,Uk)×Visited(Uk,Lj) ----- UNL
Formulae UNP/UNL take page/link popularity into account although there is no pop function present, because they
calculate the sum, not the average.
2.4.4 User vector online learning (UVO)

As mentioned above, user preference is dynamic. It is not wise to treat user preference as a static vector. We
can update the user vector online by considering pages the user has read (not just clicked), only pages the user has
read for more than t seconds (suppose t = 5, t=10, etc.). The vector is updated after he/she has read a page p:

U′=U+P×Read(u,p).
Then we can use page-based or link-based algorithms to make the prediction.

2.5 Combined methods

Up till now, we have introduced 13 pure algorithms. In this part, we will introduce some combined methods
with higher prediction accuracy.
2.5.1 Top two (T2)

A simple way to increase prediction accuracy is to first calculate the scores by some pure algorithms (e.g. PV),
and then select the top two score links as the prediction result. It can obviously increase the accuracy. But the
tradeoff is that the server will have to pre-fetch two pages; the server’s workload will increase.
2.5.2 Hybrid (HB)

Since PV, LV and LC algorithms have relatively good performances, we want to find a way to mix them
together. First, we use PV, LV and LC to calculate scores for link Lm respectively, and then compute the final score
of link Lm as follows:

ϕ-HB(Ux,Lm(Pi,Pj),Wx,M)=c1×ϕ-PV(Ux,Lm(Pi,Pj),Wx,M)+c2×ϕ-LV(Ux,Lm(Pi,Pj),Wx,M)+
c3×ϕ-LC(Ux,Lm(Pi,Pj),Wx,M),

c1, c2 and c3 are the respective weights for each algorithm. The better the algorithm, the more weight. In this case,
c2>c3>c1.
2.5.3 Agreed (AD)

In order to increase accuracy, we tighten the restrictions on prediction: a prediction is final if and only if
several algorithms reach the same result: ξ-PV=ξ-LV=ξ-LC. For example, we use PV, LV and LC to calculate scores
respectively, and if link l gets the highest scores in all cases, l becomes the predicted link. Otherwise, no prediction
will be made. So,

ξ-AD(Ux,i)= .

 if , (, , ,) (, , ,)

 and (, , ,) (, , ,) and (, , ,) (, , ,)

no prediction, otherwise

y u i PV x y x PV x u x

PV x y x LV x u x LC x y x LC x u x

l L U L W M U L W M

U L W M U L W M U L W M U L W M

ϑ ϕ ϕ

ϕ ϕ ϕ ϕ
− −

− − − −

∀ ∈ ≥


≥ ≥



2.6 Computational complexity

In this section we will analyze the computational complexity for computing the score for a link (see Table 1).
Since some computing tasks can be arranged to carry out off-line outside rush hours, such as creating the UM
Matrix, rebuilding page vectors, and building link vectors, we can ignore these computations in Table 1. Generally
speaking, n is smaller than 50, so all the computational complexities in table 1 are small.

Table 1 Computational complexity for computing score for a link in 16 algorithms and methods

Algorithm RD SS PC PV PN LC LV LN
Complexity O(1) O(n) O(1) O(n) O(wn) O(1) O(n) O(wn)
Algorithm UM UVL UVP UN UVO T2 HB AD

Complexity O(n) O(n) O(n) O(sn) O(n) O(2n) O(2n) O(2n)

 韩靖 等:网站浏览路径预测 1047

A page or user vector contains n bits for n basic types. w is the length of user history. s is the number of other
users who have also followed this link.

3 Experiments and Results

The previous section has provided 16 algorithms and methods for predicting a user’s browsing path on the
Web. In this section we present experimental results on the data of 49 users’ Web logs for visiting www.east.net.cn
inside Microsoft Research China. We compare performances of these algorithms and methods, and find that some of
them produce highly probable predictions.

3.1 Experimental setup

The predictability of HTTP requests was measured using training and testing data consistent with the rules of
cross-validation. We used separate data sets to construct and test the prediction model M. We downloaded a mirror
Web site of www.east.net.cn (accessed in July 26, 1999), removed multi-frame pages, retrieved Web page vectors,
and extracted the directional graph from the structure of the Web site. The mirror Web site contained 300 pages and
800 links. We then collected 49 users’ 3800 Web logs and their profiles. The Web logs and profiles of these 49
users were split into two groups, and 8 randomly selected users’ Web logs and their profiles were used as training
data. We tested 100 random partitions in the experiment and calculated the average performance. Both the page
vector and the user vector contained 30 bits, 1 bit each for: sports, travel, game, music, films, cartoon, politics,
economy, news, military affairs, law, science and technology, computer, internet, zoology, education, books,
company, finance and investment, advertisement, literature, painting and calligraphy, design, character, traditional
culture, foods, shopping, life, medical treatment, and others. For each bit in the user vector, 0 means dislike, 1
means occasional interest, and 2 means like. For each bit in the page vector, 1 means the page is related to this type
of content, 0 otherwise.

3.2 Results and analysis

During each test, we respectively reported the percentage rate of accuracy and recall, as well as the average
among 100 random partitions:

Accuracy=Total Correct predictions/Total predictions×100%,
Recall=Total predictions/Total HTTP Requests×100%.

3.2.1 Pure algorithms
Figure 6 shows the average accuracy of pure algorithms. The recall is 100% for pure algorithms since they

make a prediction for each request. From this chart, we can draw two conclusions: (1) Accuracy of pure algorithms
is not high, (2) Link-based algorithms have the better performance among pure algorithms; the best one is Link
Vector (LV, 30.4%).

Avg. accuracy

15.1
18.3

22
18.1

24.7
30.4

19.4

28.7

19.7
24.6

0
5

10
15
20
25
30
35

RD SS PC PV LC LV UM UVL UNP UNL
Algorithms

%

Fig.6 Avg. accuracy of pure Algorithms, recall is 100%

http://www.east.net.cn/
http://www.east.net.cn/

 1048 Journal of Software 软件学报 2002,13(6)

3.2.2 Combined methods
From Table 2, we can see: (1) Combined methods can increase the accuracy, especially AD (79.1%), better

than the algorithm provided by Stuart[1]. The reason is that Stuart’ prediction is entirely based on visited paths, but
ignores other useful information such as Web page content types and user preferences. (2) The tradeoff of high
accuracy is low recall. Although AD has high accuracy, its recall is low (17.4%).

Experiments also show that for the HB method, the following way seems effective for getting the values of c1,
c2, and c3: first compute the accuracy APV, ALV and ALC of PV, LV, and LC respectively with training data, and then
assign c1=APV, c2=ALV, c3=ALC.

For the AD method, we compare these three combinations: PV-LV-LC, LV-LC, and PV-LV. LV-LC and
PV-LV are variations of AD: PV-LV means the system will make a prediction only if PV and LV produce the same
result; LV-LC means the system will make a prediction only if LV and LC produce the same result. Fig. 7 shows
their respective results. We can draw the following conclusions: (1) Recall: PV-LV-LC<LV-LC<PV-LV; (2)
Accuracy: PV-LV-LC>LV-LC>PV-LV; (3) Higher accuracy, lower recall.
3.2.3 User vector built from page

We find that it is very difficult to get user profiles because users are impatient while they are filling out profile
forms and they are unable to give a perfect profile even though they want to. So maybe we can retrieve the user
vector without any user profiles. One way is to build the user vector from page vectors, as mentioned in Section
2.2.4. (UVP / UVL). In this experiment (see Fig. 8), we use page vectors to rebuild the user vector and test SS, PV,
LV, UM, T2, HB, and AD with the new user vector U’. We find that the accuracy decreases a little in LV, UM and
T2, but increases a little in SS, PV, HB, and AD. Therefore, in the future work and experiments we can build the
user vector from page vectors, which makes users happy because they no longer have to fill out a form before
browsing.

Fig.7 Avg. accuracy and recall of 3 kinds of AD

79.1

40.1 48.2

16.7

37.8 20.8

0

20

40

60

80

100

120

PV-LV-LC LV-LC PV-LV

%

Accuracy Recall

18
.3 19 18
.1

19

30
.4

25
.1

19
.4

18
.3

44
.4

44
.2

31
.7

32
.2

79
.1

81
.9

0
10
20
30
40
50
60
70
80
90

U - by user profile
U'- built by page

SS PV LV UM T2 HB AD
Fig.8 Comparison of avg. accuracy for U and U′

4 Conclusions and Future Work

Given that most servers spend a significant portion of CPU cycles idle, we should take advantage of this
predictability and use these free cycles to hide the latency of page generation and other pre-processes as much as
possible. Web applications can pre-process predicted pages for their clients before the pages are even requested by
the user. This is very helpful in reducing the waiting time for the user. The core of this is prediction. In the above
sections, we have analyzed and compared 16 algorithms and methods for predicting the user’s next HTTP request.
LV is the best one among pure algorithms, but is still not good enough (accuracy is 31%). Combined methods
increase the accuracy, especially for AD, whose accuracy is 80%, which is higher than that of the Stuart method

 韩靖 等:网站浏览路径预测 1049

whose prediction is entirely based on logs of paths visited. Although recall of AD is low, it will not do harm to the
server. With no prediction the server remains idle during the idle CPU cycles, but wrong prediction will increase the
server load. To best utilize a limited number of idle CPU cycles, we can use a heuristics of predicting pages with the
AD method in the idle CPU cycles. There are a lot of enhancements to be done in the future: (1) Improvement on
prediction. For existing algorithms, we can consider the improvements on pop functions, AD+TT, bit value of vector
from 0/1 to –1/1, better weight setting in HB, inverse user frequency, etc. The user’s choice is not only affected by
his/her personal preference (long term/short term, changeable/static), but also by the link’s attractiveness
(underlined words and their positions on the screen) and the time of browse (weekday/weekend, daytime/night). We
can also try other methods to make the prediction, such as Decision Tree, Naive-Bayesian, Bayesian Network,
Reinforcement Learning, Alife Techniques, even adaptive agent for user, adaptive agent for page. Another
consideration is the selection of training samples: we can find good samples from experiments or samples produced
by experts. (2) Improvement on experiment design. As mentioned above, in the future experiment, the user need not
give a profile, and we can get the user profile from pages he/she has read. We also plan to test data from other Web
sites such as MS.COM. (3) Improvement on pre-fetching. The most important thing for prediction is accuracy. To
increase accuracy, one way is to use agreed algorithms. Other possible ways are: Top1+Top2, threshold (needs
learning) for prediction made, combination of prediction and recommendation, etc.

Acknowledgement Lie Gu has helped us to implement a browser for experiment. Machine Learning and Applied
Statistics Group (MLAS) of Microsoft Research Redmond provided an executive program for clustering method.
Thanks to 48 staff and interns in Microsoft Research Asia who joined in the experiment.

References:
[1] Schechter, S., Krishnan, M., Smith, M.D. Using path profiles to predict HTTP requests. In: Proceedings of the 7th International

World Wide Web Conference. Brisbane: Elsevier, 1998. http://www7.scu.edu.au/programme/posters/1839/com1839.htm.

[2] Breese, J., Heckerman, D., Kadie, C. Empirical analysis of predictive algorithms for collaborative filtering. Technical Report,

MSR-TR-98-12, Microsoft Research, 1998.

[3] Cadez, I., Heckerman, D., Meek, C., et al. Visualization of navigation patterns on a Web site using model based clustering.

Technical Report, MSR-TR-00-18, Microsoft Research, 2000.

网站浏览路径预测

韩 靖 1, 张宏江 2, 蔡庆生 1

1(中国科学技术大学 计算机科学技术系,安徽 合肥 230027);
2(微软亚洲研究院 多媒体计算组,北京 100080)

摘要: 用户浏览因特网网站点击某个链接后,该链接的网页往往需要一段时间才能传送到用户端.为了缩短用户的
等待时间,利用网站服务器的空闲CPU时间,对用户下一个HTTP请求进行预测,以便预处理下一个网页是一种可能
途径.使用已分类的网页信息、用户配置文件和网站日志进行预测,介绍并且分析了 16种预测算法.实验结果证明某
些算法是比较有效可信的.
关键词: 网页;HTTP请求;预测;用户配置文件
中图法分类号: TP393 文献标识码: A

	Problem Definition
	Algorithms and Methods
	Simple algorithms (for comparison purpose only)
	Random (RD)
	Similarity between user and page (SS)

	Page-Based algorithms
	Visited page counter (PC)
	Page vector rebuild-group page by grouped users (PV)
	Page neighborhood (PN)

	Link-Based algorithms
	Visited link counter (LC)
	Link vector-group link by grouped user (LV)
	Link neighborhood (LN)

	User-Based algorithms
	User mapping (UM)
	User vector rebuild-group user by grouped pages/links (UVP/UVL)
	User neighborhood (UNP/UNL)
	User vector online learning (UVO)

	Combined methods
	Top two (T2)
	Hybrid (HB)
	Agreed (AD)

	Computational complexity

	Experiments and Results
	Experimental setup
	Results and analysis
	Pure algorithms
	Combined methods
	User vector built from page

	Conclusions and Future Work

