1000-5825/2001/12(07)0971-10 ©2001 Journal of Seftware ¥ 4 % B Vol.12, No. 7

An Ada-Based Object-Oriented Modeling Language’
DAI Gui-lan, XU Bao-wen

(Department of Computer Science and Technology, Southeast University, Nanjing 210096, China);
(State Key Laboratory of Softwure Engineering , Wuhan University, Wuhan 430072, China)
E-mail; bwxu@seu. edu.cn

http://www. seu. edu. en

Received February 1, 2000; accepted December 19, 2000

Abstract This paper describes an Ada-based object-oriented modeling language AMI. which takes a unique
and innovative approach to import the fundament and philosophies of Adag5. and extends it with some facilities
for the supporr of object-oriented modeling so that AML is suitable to model large software systems. AML
adopts the package concept from Ada85 and makes it become the core construct of AML. At the same time,
AML introduces the facilities such as the task unit and the protect unit to describe concisely positive control com-
ponents and resource protect components. Absorbing the idea of multiple viewpoint models, AML disjoints the
information describing different characteristics of the given entity, AML uses the new concurrency mode! and the
restriction facility to address modeling concurrency and nonfunctional characteristics of systems. Also AML has
good extensibility and can be applied to all kinds of domains. In short, AML is user-oriented, developer-
oriented, and system-oriented modeling language, and overcomes some limitations such as insufficient expressive
capability and limited application domain of some other modcling languages.

Key words: modeling language; programming language; software modeling; modeling method; object-orienta-

tion; concurrent processing

Model-based approaches. one of the main software development methods, have become the hot research
realms of software engineering. Modeling languages are key to the model-based method. Because of the importance
of software models and modeling languages. for years people have done many successful modeling researches, and
developed a set of important modeling languages , such as VDM™, UML ™ and ROOME ete. , that are of great
theoretical and practical value. Modeling languages can be divided into formal and semiformal languages according
to levels of formality. Since obiject vriented technique can be used to deal with the software system complexity effi-
ciently, the commonly used semiformal modeling languages are graphic object-oriented ones.

Although modeling languages and methods based on formal and graphic object-oriented technique have been
progressing rapidly, there are still some shortcomings. Formal languages require profound mathematical back-

ground, which prevents the users from participating in the development and impedes the wider acceptance by

» Supported by the National Natural Science Foundation of China under Grant No. 60073012 (E&F 8 8B ¥4); the Foun-
dation of Visiting Scholar of Key Laboratory in University of China (RS %¥ 8 ESAETR T REERS); the Foundativn of Key
Teacher in University of China (B %% & TR LR TR

DAI Gui-lan was born in 1972. She got her Ph. D. degree at the Department of Computer Science and Technology . South-
east University. Her research interests are modeling language, software engincering and object technique. XU Bao-wen was born in
1961. He is a professor and doctoral supervisor of the Department of Computer Science and Technology . Southeast University. His

current research areas include programming language, software engineering, concurrent and network software.

© PEBESHASUR b/ www. jos. org. cn

972 Journal of Software $HHFI 2001,12(D

vsers. Though extended by using cbieci-orientec technology, some lormal languages, such as 2 and VDM, lack
the ability of expression for software structure and are not very suitable to the large software system development.
Graphic object-oriented languages exceed the limi-ation of the formal language in readability , architecture represer-
tation and efficiency, but they ezsily arcusc diseontinuity and are impractical for eapruring detail and automatic
support. Furthermore most modeling languages are only suitable for some specific domains. Also, there are some
guestions in modeling the system »f nondeterminism and concurrency, which seriausly affects the =xpressive ability
of the languages.

To research inta some questions of modeling languages in expressive capabili-v. expressive way, and applica-
tion domain, we have designed an Ada-based obiect-oriented modeling language AML, siudied 11s modeling method
and formal technique, and discussed the implementation technique of AML model®~ "), This paper presents the
AML modeling language. It is organized as follows. Section 1 anzlyses the main philusophies of AML. Sectior 2
discusses its basic consiructs and their inheren relarionships. Section 3 gives an AML model 1o illustrate the use of

AML. Sectivn 4 compares AML. with several modeling languages used communly and draws conclusions.
1 The Design Philosophies of AML

In general. graphic lenguages arc more intuitive and easier to depict the framework of systems. However, in
describing the details of software systems, texi-based programming language approach is more powerful than
graphic approach. Morcovers programs written in modern programming languages, such as Ada, are normally
readable and thus understandable. Particularly, Ada can be both programming-in-ihe-large languaye that specilies
module interface snd programming-in-the-small language that specifies module details. Ada¥5 not only has rich de-
ta structures and control structures, but also provides some facilitics such as real time handling,s concurrency hen
dling and exeeption handling. Ada05 has strong functions and elegantly shows the ideas of software engineeringt®.
Therefore, AMT. imperts Ada%3’s fundament and philosophies. adosts ils basic facilities, and cxtends it with the
facilities for the support of modeling large software systems.

Soltware models are abstract descriptions for software systems to be built. which emphasize main aspects and
ignore minor ones, so as to help software deslopers and end users to understand the features of the sysiems well
hefore bemg buill. In order to make software models intuitive and compact, AML absorbs the idea of multiple
viewpaoint models, disjoints the information dascribing different characteristics of the given entity, and places them
in correspending program unit specification, program unit body or program unit description respectively. These
models complement each other. This helps the developer 10 concenirate on one aspect at a time , to detect early er-
rars ur inconsistency in the modeling process o improve consistency and compleleness, 1o sowve effectively inheri-
tance anotmaly, and improve medel reusability and the provided facilities to keep with the refining process of the
softwarce development.

Because coneurreney is considered to be an inherent feature in many applization domains . it must be explicitly
included in :he model. Not only in order to simplify the madeling process. but also to picture the systems properly
and visually, AMI. uses the new concurrency modet, which absorbs the benefits from the explicii concurrency
model and the implicit coneurrency maodel. We ronsider concurrency in the early stage of the software develop-
ment, and use the inherent properties of the program units to ensure that the entilies are consistent and com

pletet’],
2 Basic Syntactic Elements

Modeling languages skovld describe sofrware systems at different ahstraction levels. Types or classes are basic
g guag ¥

© HIEERES AT hip:/ www. jos. org. cn

B2 ¥ AR F A GEAN R EREY 973

abstractions in object-oriented languages. AML adopts the ways of type definition » and abstracts entities in the re.
al world as (ypes. Since package has better encapsulation and the result model by using it corresponds well to the
real world, AMI. adopts the package concept from Ada95 and makes ir become the core construct of AML. There
are some positive control components anid resources protecting components in software systems. Since they have no
attributes, they are difficult to be abstracted as types., Moreover, these components should be accessed exclusive-
lys while packages cannot provide the corresponding functions. As a result AML introduces the task unit and the
protected umit concepts from Ada95 and absorbs some of their [eatures. At the same time., AML provides subpro-
gram unit {procedure or function) which is used to model sequential activities, and generic unit which is used to
avoid writing similar models simply because of different ertity types,

From this point. an AMI. model consists of a series of interacting program units, Since AML and Ada95 are
used in different development stages and abstraction levels, the program unir is modified and extended in terms of
the design idea of AML., and separates its static camponents from its dynamic behavior ones. Thus, a program unit
(.e., package, task and protected unit) consists of a program unit specification, an optional program unit body
and an optional program unit description in AML, in which the program unit specification provides an interface for
users, the body part gives the concrete implementation to perform the program unit’s functions. and the descrip-
tion part describes the program unit’s dynamic behavior and constraint. In AMI.. the program units and parts of
their facilities are similar to those in Ada95 and thus are not discussed in detail. Rather, taking package as an ex-
ample, we discuss briefly special components needed in software modeling.

2.1 Package specification

Packages are program units that allow the specification of groups of logicelly related entitics. A package con-
sises of a package specification, s package body and a package description, it which the package specification is
used to describe the part of package that is visible to other package units. [n fact, package specification is a kind of
protocols stipulating the availahle entities and eperations, the accomplishing functions and the salis[ying needs of
the implementers of a package. Package specitication itsell can be divided into two parts, public part and private
part. The public part of a package contains all the information that another program unit is sbl: to know about the
package. The private part, following the public part with the reserved word private, consists ef a group of specifi-
cations unavailable to other program units,

According to the principle of information hiding . the definition of a type is invisible to the outside world, arnd
thus is placed in the private part of a package, The operations corresponding to the rransitions triggered by exter-
nal events have two meanings, one indicates these operations that can be directly used by users and the other de-
notes the received messages from surrounding environment. The operations corresponding to entry actions. exit
actions and seli-transitions of the states are declared in the private part of a package.

To model conteinment relationship between the entities, and to embody adequately the refining process of the
software development . a package can nest another package. task, protested unit. ete. If the nested program units
are visible to users, then they are declared in the public part of the nesiing package, otherwise in the private part
ar the body part.

In order to model the architecture of the software systems appropriately and intuitionally, to improve the
tractability of the soliware development , AML provides association facility in a package specification to deseribe di-
rect communication relationship between the nested program units. The basic syntax of a package specification is

given in BNF as follows.

© HEFRES AT http:/ www. jos. org. cn

974 Journal of Software MHAFI 2004, 12(7)

Package Specification: —
package Defining_ Program_ Unit .Name §s
{Basic Declarative . T1em}
private
{Basic_Teclarative _ [tem)~
end [Parent Unit_Name. Jldentifier]
Basic. Declarative Iterm.,=
Type—_Declaration] Object -Declaration | Subprogram —Declaration| Structure - Desctiprion - Facility
{Package Declaraticn | Task - Declaration | Protected - Unit- Doclaration
2.1.1 Structure description facility
Architecture is one of the mechanisms dealing with complicated software systemsP!. So it must be explicitly
given in the model for the convenience of the software development and maintenance. Graphic object-orented mod-
cling languages and modeling methods, such UML, OMT! 1 O0AM are. . provide the facilities to deseribe the
static relationship between classes, that is, association, containment relationship and inheritance relationship.
AML provides the derived type and the program umits that can be nested to model intuitionally znd concisely
comainment relaticnship and inheritance relationship. At the same time, AML provides the associstion facility to
model the possible direct communication relationship (i, e. , unidirectionai and bi-directional) and the execution
mode between the program units (. e,y sequential execulion and concurrent execution). It is given in BNF as
follows.
Structure - Description —Facility : ; —
relation Assariation _Tlesrription
Association . Deseription, , =
Association —Program-— Unit Association {Iperator_Execotivu -Mode | Association— Program- Unit
Association - Program-. Unit; ; =
Program. Unit- Name {Multiple . Constraint)
Associztion Operator,, =<7 — [<J— >
Execution Mode, , =concur | sequence
Muitiple - Constraint : : = Integer | Integer. . Integer

where *

—>>7 denotes the left sending one-way messages to the right, and “<—>” denotcs the two-side sending
bi-dircctional messages. Multiple constraint designates the cardinality of the association numencally specified. The
reserved word concur denotes concurrent execution, and sequence denotes sequential execution, If the execution
tiode beowewn the prugram units can rot be determined for the moment, then it is assigned a nall.
2.2 Package body

The implementations uf the gperations declared in a package specification are invisible 1o users, and rhus are
encapsulated in corresponding package body. Since the operations may use some public variable or data type in the
process of implementation, AML also provides object declaration and data 1ype declaration in a package hody. The
bodies of the nested program units are given in that of the nesting package. The syntax of a package body is given
in BNF as lolows.

Package Body..=
pachage bedy Delining Pragram- Unit— Name is
{Package.. Body - Declarative_ Item }
ene [[Parent - Unit..Name. Hdenrifier J;
Package- Body Declarative_liem. .=
Type Declaration|Object— Declaration | Subprogram _Declaration | Subprogrem — Bedy | Package - Declaration
| Package - Budy | Task -Declaration | Task-. Body| Protected - Unit— Declaration | Pratected - Unit_ Bedy

© HIEERES AT hip:/ www. jos. org. cn

BAEZ $. AR TFAdaW RS S L EMES 975

2.3 Package description

Parkage description is an extension to package in Ada05, and is used to describe the dynamic behavior and
constraint of the encapsulated entities from inter-entity viewpuint snd intra-eutity viewpoint. In a package descrip-
tien, AMI, provides the state model to describe the process of an entity receiving messages, transforming from one
stale to another and sending messagess and provides the synchronization facility to n{éacl the sequence of mes-
sages between the nested package units and their synchronization points. At the same time, AML provides the re-
striction facility and the exception handler for the support of the characteristics of non-funcrional and exception.
Like package body, package description has invisibility to users. and is only invelved in the implementation of a
package. The grammar is partly given in BNF as follows.

Package . Description ;=

parkage deseription Defining . Program .. Unit—- Name is
1 Package - Description —Declarative Ftem)
end [[Parent - Unit—Name, JIdentifier];

Package Deseription Declarative Item..—

Package - Description | Task . Descripoion |Protected - Unit . Description | Exception- f landier_Facitity
|State Machine_ Facitity | Synchroniza tion_ Facility {Restriction —Facility

State_Machine Facility, ; =

statemachine State . Mode! _Description
Synchranization. Facility, ;=

synchronization Synchronizetion - Relationship - Description
Restriction_Faeility, , =

restriction Resiriction- Description
Excepiion - Handler— Cacility . : —

exception Exception - Handler{Exception_Handler}

These facilities are brizfly discussed as follows. Since the state model and the synchronization facility are
based on certain communication mechanism, the communication mechanism should be discussed in advance.
2.3.1 Communication mechanizm

In order to increase reusability and maintainability, the coupling between program units should be made as
weak as possible. In AML, communication between program units is based on a message-passing model. The only
thing thar a sender and a receiver must share is the general sumantics and format of the message.

AML provides two kinds of communication mechanisms, the synchronous communication and the asyn-
cluonous communivation. Generally the former is used 1o synchronize or start other program umits, while the latter
notifies other program units abour the events. To simplify modeling, the synchronous communication and the
asynchronous communication use similar syntax structure and the same keywords . and add the message sign before
the message name to wdentifly them. In early stage of the soltware development, we may take no account of the des-
tnation or spuree of 4 message. This can reduce the coupling between program units and improve AMI. flexibility.
Briefly it is shown in BNF as iollows.

Message _Receiving Statements, . —

Synchronous . Message— Receiving - Statements | Asynchronous Message— Receiving - Statements

Synehronous - Message - Recciving _Statements s =

accept syn Mcsszge Name[(Parameter—Profile)][do
Sequence- Of - Statcments
end [Message Name {]

Asynchronous Mossage Rucviving Statements: ; —

© HEFRES AT http:/ www. jos. org. cn

975 Journal of Software BAHFR 2001,12(D)

accept asyn Message — Name[(Parameter _ Profile)]

Message —Sending - Statements; s —

Synehranaus Messsge Sending Statements|Asynchronous Message Sending Statements

Synchronous Message Sending - Statements, ; —

send syn Message—Name[(Actual- Paramerer Part) J[te Program- Unit—Name]
Asynchronous - Message— Sending— Statements ; ; —
send asyn Message Neme{ (Actual_ Parameter_Part) J[to Program . Unit. Name)
where “syn” denotes synchronous message sign and “asyn” denotes asynchronous message sign.
2.3.2 Siate model

State-Machine technology is the most direct and common way for modeling behavior'™, A state model consists
of a set of states natned and direct transition between states, and is used to describe the behavior of an entity in re-
sponse to external stimuli. To eliminate state explosion that attributes to flat or unstructured state model, AML
provides explicit representation for hierarchical stute, *and” state and ‘or’ state. The hierarchical srate modeling
capabilities of AML can be used to express this abstraction by nesting substates inside a higher-level state. If the
system is in some substate, then it is also in the correspending superstate. ‘And’ state means that all the members
have values at the same time. ‘Or” state means that one of the members has value at a time. Each state component
may have its own sub-components. The basic syntax of stare 1ype definition is given in BNF as follows.

State — Type_Definition! = State- Componert . List

State— Component _ List:: = *Or’ _State_Component . List | *And’ . State _Compenent _Tist

' State Component Listl!=

[State Value[State - Compeonent List] {; State-Value [State —Component— List 1)

‘And’ State.. Component_Listii—

(Stare— Value[State - Component List] {y State_ Value [State_Component—List]})

AMI. modifies the select statement referenced to Ada¥h to model all kinds of possible structures in state
model. A series of actions is performed when an entity transforms from a state to another. Though these actions
(such as sending messages and modifying the value of state) are given in the corresponding subprogram body, in
order to improve state model readability and expressive capability. the messape sending statements and the object
state values are explicitly shown by coruments. Moreover, because of the transition triggered hy any reason, the
exit action and entry action of the same state are invariable. An entry action, a trensition and an cxit action of cach
state are thus modeled respectively as an operation. This helps to improve model reusability and simplify design.
2.3.3 Synchronization facility

In the process of modeling software systems. it is quite important for the description of sequence of handling
messages, which not only reflects the process of direct interaction between the entities and their synchronization
points, hut also is the foundation for refining the behavior of an entity further. Most graphic modeling languages
provide corresponding facilities for the support of synchronization mechanism, such as sequence diagram in UML.,
scenario in ROOM. There are some commaon questions : lack of expressive capability of the cases of nondeterminate
interaction and an entity sending or receiving many messages simultaneously. Based on the description idea of se-
quence diagram and scenario, AML provides synchronization facility, which can not only describe the process of
determinate or nondeterminate interaction between the program units, but also model the cases of a program unil
sending or receiving many messages simultaneously. The syntax of synchronization facility is briefly described as
follows.

Synchronization - Relationship Description =

when Cond =">

Synchronization— Description— Statement {;Synchronization... Description —Stetement};

© HEFRES AT http:/ www. jos. org. cn

RE2 . AT Ada 8RR ABIES 977

Synchronizaticn _Description Statement? ! =
¢{[Message_Label. | Program Unit.- Name, The_Received —Message - L.st, The. Sent. Message - List)
The_Received.. Message —ListIi —
Message .Name [The_Relationship. Between_Measages]| Message Name
{"The Relationship. Between - Messages | Message_Name}
The. Sent-Message. Listil =
Message Name [The- Relationship - Between_Messnges] Message - Mame
{["The..Relationship—Between - Messages | Message _Name|
The_Relativuship_ Between . Message. § — > | |
Message. Label) = Integer
where “message. label” identifies the sequence of interaction between the program units. U the arrival of a message
i# at random . then the “message label” may not be needed. “7” denates the order relationship between the mes-
sages and *|” denotes that the two are optional. Further mare, since it is possible that the actvities of an ennty
are a circular process, we can see the statements as a loop body.,
2.3.4 Restriction facility
Tn order to facifitate the model proof, and to ensure system vorrectness. the restriction section of an AML
progra: unit contains an extended RTL (Real Time Logic) predicate which constrains the behavior of an entity to
describe some properties such as sequence of messages handling, safety and liveliness. The restriction facility com-
plements the behavior that state model and synchronization facility can not describe, On the other Laad. it
describes the non-functicnal characteristic of an entity. In AML. integrating restriction facilities with inherent
characteristics of the program units way elficiently deal with nondeterminism of the systems. For example: A pro-
gram unit may receive a set of messages: M, M, M. M, and M,. Suppuse the operation M, €} is triggeved by 2.
the operation M,() is triggered by M,. and so on. If M;() is delayed until M, () has commenced execution, M; ()
is delayed until () has commenced executian, but M, () and M,() are at random, then it is described as follows.

Vi€ N1IM, O before (330,10 and 1{A,0,) before 7 (M)

W oy -
!J “

where denotes the time of stopping execution, * denotes the time of beginning execution, and “i” denates

the i-th time. Restriction clauses also include the connectives “and”, “or”, negation “not” and so on.
3 An Example

In o-der to illustrate the use of AML. we give an example of AML model, which schedules and controls four
clevators in & building with 40 floors. The elevators will be used te carry people from one {lour tu ancther in the
conventional way. The system can be divided into three subsystems. These are a proklem domain subsystem
(PDM), a hardwere interface subzystern (HIMDY, and & task management subsystem (TMM}. We only model the
PDM partly owing to the limitation of space.

The PDM subsysiem receives messages from the HIM subsystem such as Elevator - Summoned, performs a
series of aclivities. and then sends appropriste messages to the H'M subsysiem and the TMM subsystem, The
PDM encapsulates several antities: (1) an Arrsival Event provicing sll the services that en elevator arriving at s
floor must performs (23 a Thestination_Fvent encapsulating how to recognize destination request; (3) en Elevator
praviding the data and services needed for the elevator control end management; (4) an Elevator Motor contaimng
¢l kinds of the elevator control serviees; (5) en Overweight_Senser encapsulating the know how of the sensor;
(6) a Destination_ Panel being a parl of interface and pointing cut which elevator should get 10 the destination:
(7) a Floor implemneniing the funciions of elevator scheduling; (&) a Summons Event encapsulating how to recog-

fize summon request; ard (9) a Summon . Panel being similar to the Destination Panel™. These entities and their

© HEFRES AT http:/ www. jos. org. cn

978 Journal of Sofeveare HAESIL 2001,12(7)

relationship are partly given as follows.

package PDM is —— The subsystern PDM is encapsulated in the package PLIM.
procedurs ElevatorCommand ¢ ., 33
task Elevator 4 - - Since the elevator is a positive control, and thus is modeled as a task unit.
entry Control_ Elevator (Contrcl-Elevator Command: String: Curtent - Direction, Current.. State: out String);
entry Recugnize—Elevaior— Ready (Elevaror_1d: Integer; Current—Srave: String);
entry Keport Elevator . Status ()
end Elevator;
package ArrivalEvemnt is
end ArrivalEvent;
private
relation
Summons—Eveat (1Y — > cencur Summons.-Pancl (0. . =) 4

Floor (1. .)< —>¢omeur Elevator(i. . ») ;
end PDM

package hody PDM is
task body Elevator is
package Destination - Panel is
end Destination.. Panel ; -
procedure Cortrol_ Elevetor (Control _Elevator- Command : String; Carrent— Direction, Currenc_State: out String) is
begin
it Contral.. Elevator_Command = (Up|Down » then
Cuyren: - Direction ; = (Up | Down) ;
Current Statrns, =Busy:
elsc
Current.. Status ; = Stopped;
send asyn Control - Elevator -Motor to Elevatar— Motor(Elevator. Id)
end; :
end Elevator;
end PTIM

package description PDM is
task description Elevator is
package description Destination. Pancl is
end Destination Panel;
type Elevator -State is (Busy(Up-Up,Up. No,Dn-Dn,Dn_No) . Stop, Idle, Ready),

E_8; Elzvator. State:
statemachine
loop
when troe=_-
secept syn Report- Elevator -Status (-} du
Repurt Elevator Status(-- 3,
end;
when {E_5=1dle and Summon- Floor=Current -Floor)
accept asyn Elevator_Summoned (-)5
E. S: =S8iopped;

raise Stare . Ertnr; —ralses exception.

© HIEERES AT hip:/ www. jos. org. cn

BE: F AL T Ade b R REET 279

when E_5=5topped=">de —-The following is a sell transition.
Recognize- Elevator - Ready (-)
--yend syn Report—Sensor_Status (Flevator_1d) 1o (Overweight Sensor(Elevator.-ld); E §; —Ready;
end toop;
restriction, . .
exception
when Srate . Errar=__>do. ..
end Elevator;. ..
synchronization--Description for synckronization points and the transferred messages between the entities in PDM.
[Elevator, Control —Elevator, Contzol. Elevator Motor);
{Elevator. Recongnize—Elevator Ready, Report..Sensor_Sratns; Report Elevator Ready);
{Floor. Report_Elevater . Ready.,. ..). ..
end PDM.

4 Discussion and Conclusien

AML inherits many mechanisms of Ada95. So AMI. has the characteristics of Ada®5. It absorbs the idea of
multiple viewpoint models used in some graphical object-oriented modeling languages and inodeling methods.
Therefore it can early detect errors or inconsistency and make the models more intnitive atd clear. This over-
comes, to some extent, the shortcoming of modeling large and complex systems in textual languages.

Though QCTOPUS and OMT use the three models 1o describe the given system, its underlying language lacks
rigorous symiax and semantics. UML is a modeling language based on several OOA/OOT methods, Though its se-
mantics is not given in formal way completely, it is still quite robust for it is a modeling language thar has defined
the complete semantics of its elements. No doubt it has very strong ability of expression. But UML adopts the ex-
tended concepts and graphic notations of those OO methods that contribute to the UML. So its complexily is well
above those OO methods. Tt has more than vne hundred modeling elements, and needs nine xinds of diagrams 1o
describe a system. Moreaver . different kinds of diagrams have redundanzy and UML doesn® indicate which dia-
grams can be vomited. As z matter of fact, we must pay much more to learn and to use in the projects. AML uses
the program units to describe the given system. so this langnage is simple and can reduce the redundancy to large
extent. Further more, AML adopts the basic idea of OO graphics structure representations, and provides the
structure description facility to describe the architecture of the given system sg that it has got rid of the weakness
of structure expression of textual language.

VDM+-+ is a formal modeling language. Theugh it has rigorous syntax and semantics, 1t lacks the ability of
expressing large software architecture, AMIL uses the fe;cillty similar to the aun_reasoning part of VDM 4+ 1o e
seribe the nonfuncrional characreristics of systems such as nondeterminism, liveliness, real-time reactiveness etc.
This increases the system reliability dramatteally.

AMI. has both formal notations and semiformal notations. By using Z notation to formalize basic concept of
AML, we can translate peonle-ariented informal representation with certain concepts into computer-oriented for
mal one. Therefore, AN has the merits of formal languages.

Further more, AML net only has more powerful ahility of expression for concurrent madel, hue also has the
advantages of easily trausforming programming language into implementation and reducing discontinuity. This
helps tv improve the software automation, Also AML is a general-purpose modeling language which has good ex-
tenaibility and can he applied to al! kinds of domains.

In short, AML is user-oriented, developer-oriented. and system-oriented and overcomes the limjtations of ex-

isting modeling languages cfficiently. At the same time, it also propels forward the study of modeling languages.

© HEFRES AT http:/ www. jos. org. cn

980 Journal of Softwware #HBFR 2001.12(7

Acknowledgements The authors wish 1o thank CHEN Zhang-giang, L1 Bang-qing, ZHOU Yu-ming, LIU Yuan,
L1 Sheng-zhi and TENG Cheng fur their veiunble comments.

References

[t] Lene. XK. Formal Object-Oriented Development, London; Springer- Verlag. 1995,

[2] Sinan. 5. A. UML in a Nussheil. New Yark: O'Reilly 3. Associates, 1998,

3] Seclicy, B. Real-Time Object-Ollented Moceling. US; Katherine Schowdter, 1994,

[4] Dai, Gui-lan, Xu, Bao-wen. A compatiscn and analysis of real-time object-oriented modeling methods ROOM and OCTO-
PLUIS. ACM SIGPLAN Natices, 1999,34012) :67-~70.

(51 Dai, Gui-lan. A study on Ada-based modeling language AML. and its modcling method [Ph. D, Thesis]. Nanjing: South-
east University, 2000 (in Chinese).

[5] Dai. Gui-lan, Xu. Bao-wen. [Jesign and implementation of modeling language AML. Journal of Wuhan University (Natu-
ral Science Edition), 1999,45(55) :654--657 {u Clinese).
[7] Dai. Gui-lan, Xu, Bao-wen. Algebraic semantics of modeling language AML. Journal of Wuhan University (Natural Sci-
ence Edition), 1989,45(5R) . 608~~ 660 {:n Chinese).
[8] ISC/IEC. Ada Reference Manual-— Language and Standard Libraries. ISO/1EC 9652, 1995(ED,
[8] Denel, L. M. Describing software architecture styles using graph grammars. TEEE Transactions an Software kingineering,
1908.24(7).521~533.
~10] Maher, A., Juha, K., Jurgen, Z, Object-Oriented Technology lor Real-Time Systems o Practical Approach Using
OMT and Fusion. New York, Prentice-Hall Press, 1596,
11} Yoeurden, E.\ Argila, C. Case Studies in Object {driented Analysis & Design. New Yurk: Prentice-Hell Press, 1996,

P e 30 8 ST WK

(5] WEX EF Ad HEERT AML RS PR L8400] s, % 5%, 2000

6] MEZ.BEL TMNUYRBEHT AML A998 A AKLEH A AMFER,1999.450GB) . 634~ 637,
[71 BE2 .5 @EdREEIES AML g9f0HUE . BRI K¥EEH (AREERE).1999,45(5B) 1658~ 660,

—PMEF Ad HEANKEEES
Mz, 43X

(REXRE TEAEX51RBE,TH @5 2i10098);
(B RS S T HEFRERERSE,. B B 430072

WE. ol 7T — AT Ada @A BMES AML.AML v Adavssh S s B 7T AdavsM AR AR Ao LR, A M 2 H#
MBS LG TS A VREN TRELEFENE SRR AMLIBAT AdaSS5 T M RA Lidr FHRAGH#
HEAHCAG P . EHT AdSSHIt F L Lo R P EAFRM UARIBSE THHAGE T IS HLHAGFTE
FRY B S EAML AR THBAT] SR E LM FEMARG S AL RUIH . HERLR
WA o AR AML A - HGF AR BB A RABET 2ANFRERR L AL £
REHENREFAAMLAREBES Ty AR, BAR TEAARES. L. AMLI—AREBARAF . BHFL
ABODAGNENEREST AHNRARMT AR L RE T RARAFPEREBS T HALEHE B FA.
KGR EHE ST HEET MR . 8k . hhd g Eaan

PEESFUE . TP312 XREFIRE: A

EIFFEET http:/ www. jos. org. cn

