ISSN1000-9825 Journal of Software %t ff % IR 2000,11¢23,173~178

Java Compiler Technology and Java Performance’

11 Zhen-yan CHENG Hu

(Institute of Software The Chinese Academy of Sciences Beijing 1000800
E-mail: chenghu(@126. com

Abstract This paper summarizes Java's compiler technology, and sorts all kinds of Java compilers into five
categories: compilers with interpreter technology, compilers with JIT compiler technology, compilers with
adaptive optimization technology: native compilers and translators. Their architectures and working principles
are described and analyzed in detail. The authors also analyze the effect that compiler technology has on Java
performance.

Key words Java programming language, compiler, performance.

The biggest drawback of Java is low runtime speed. This drawback limits the rapid development of Java.
The low runtime speed is mainly caused by Java’s compiler architecture. To solve the problem, people adopt

many kinds of compiler technology.

1 Compiler System with Interpreter Technology™™*

1.1 Architecture and working process
Figure 1 shows the architecture of the Java compiler system with an interpreter. The Java “compiler”

javac, translates Java source codes into bytecodes and puts them Java source codes %Java bytecodes

into 2 . class file, Java bytecodes can he seen as the machine code

‘Llass loader and bytecode venf1e-|

Get instruction i |

IvM
Garhaye Interpreterl ooy Gomroition
collector i

Threads and :
synchronlze ’

one instruction {(viz. bytecode) each time and then executes the \) Flg Bl

instructions for the JVM (Java virtual machine). The hytecodes
then run on the JVM. First, JVM loads . class file and verifies

the bytecodes. Then after verification, the interpreter begins to

execute the bytecodes. As shown in Fig. 1, it runs in a loop, gets

The architeciure

machine code associated with the instruction.
1.2 Advantages

To distinguish the interpreter in JVM from the usual interpreter such as the interpreter of Basic or Lisp.
we call the former byte-code interpreter and the latter language interpreter. A byte-code interpreter doesn’t
need to do tokenizing and parsing(that have been finished in the translation stage with javac), so a byte-code in-
terpreter is faster than a language interpreter.

With this architecture, Java hes cross-platform portability. Bytecodes can be run on any computer that has

+ JI Zhen-yan was born in 1872, She received a Ph. D. degree from Institute of Software, the Chinese Academy of Sci-
ences in 1999. Her research interests are programming lenguages, compilers, localizaticn of software (Chinese?, Al and neural
network. CHENG Hu was born in 1938, He is a professor and doctoral supervisor of the Insititute of Software, the Chinese
Academy of Sciences. His current research areas include programming langages, compilers, software engineering, Al and neu-
ral network.

Manuseript received 1998-11-27, accepted 1999-06-22.

©|v[

FESATFT http:/ www, jos. org. cn

— 174 — Journal of Software $HAFR 2000,11(2)

a JV¥M. They are machine-independent codes, With the architecture, the compiler system also has a good porta-
bility. During transplanting the compiler system, the platform-independent “compiler”, javac, doesn’t need any
modification. What need to be modified are just platform-dependent parts of JVM,

The resulting bytecode programs are more compact than the fully compiled programs because bytecodes are
more compact than native codes. The architecture supports Java’s dynamic characteristic. It doesn’t reduce
Jave's securuy.

1.3 Disadvantages

Although translating Java source codes into bytecodes saves the time for tokenizing and parsing, interpret-

ing bytecodes is still much slower than executing the fully-compiied native codes. Additionally, very litile opii-

mization can be done during interpreting bytecodes.

2 Compiler System with JIT Compiler Technology™'>**

2.1 Architecture and warking process

Jave source codes »Java bytecodes Figure 2 shows the architecture of the Java compiler system

with JIT (just in time Jtechnology, A JIT compiler 1ranslates in-

J¥M [Class loader and bytecode verifi
Garbage
collector

of interpreting the bytecodes. The machine instructions are saved

Threads and
| | synchronize in memory. The results of the compilarion are not kept between

Fig. 2 The architecturs runs. The next time the program iz rin. the hytecodes are trans-

coming bytecodes inte the machine instructions for the platform on

which it is running, then executes the machine instructions instead

lated into machine codes anne agsin.
1.2 Advantages

A JIT compiler compiles bytecodes rather than executing ons instruction at & time, so it can do some opti-
mization. Compared with au interpreter, 2 JIT comptier improves Java’s performance greatly, especially it does
very well with computational programs that execute the same series of instructions many times. Programs run
much faster wita a JIT than with an interpreter—— as much as 50 times faster. Additicnally, the results of the
compilation are not kept between runs, so loading time and storege space are saved.

The architecture still supports Java as a platform-independent, dynamic language. And it also doesn't
break up Java’s security architecture.
2.3 Disadvantages

A JIT compiler optimizes everything it sees, so it will spend a lor of time in uselessly optimizing initializa-
tion code and other methods just executed one time. The time is inevitably wasted.

Since all optimizations must be performed rapidly, the optimization techniques that can be performed are

‘very limited, and the speed-up is also limited.
3 Compiler System with Adaptive Optimization Technology!!-2'47]

3.1 Architecture and working process

The representative of the compiler systems with adaptive technology is Sun’s HotSpot technology. Its ar-
chitecture is shown in Fig. 3. HotSpot includes a dynamic compiler and a virtual machine to interpret bytecodes.
The bytecodes produced by the Java compiler (javac) are first interpreted in the virtual machine. As they run,
the profiler teeps track of performance information. When 2 method is found to be taking a iot of time, HotSpot
compiles and optimizes it. Compiled methods are stored in a cache of native machine code. When s method is in-

voked. the pative machine-code version is used, if it exists, Otherwise, the bytecodes are reinterpreted.

© HIEERES AT hip:/ www. jos. org. cn

REAE FilJava BFAL AR K G Java M — 175 —

3.2 Advantages Java source codes Java bytecodes
|
Compared with JIT, HotSpot has more time to optimize codes HotSpot

than JIT because it spends time on less codes Chot spots in the

. M:
codes). In most cases, HotSpot is faster than JIT technology and maitlg;e | Control —] Virtual
sode machine

much faster than JVM interpretation.

HotSpot’s dynamic compiler needn’t deal with exceptions and - -
Fig. 3 The architecture

the hard-to-optimize cases, because HotSpot can turn to the inter-

preter to interpret the bytecodes. So HotSpot can rapidly produce highly optimized codes for the codes that are
most likely to run., For a static compiler, it must handle all the unusual cases during oprimizing, which is very
difficult and time-consuming.

Dynamic compilation can utilize runtime informartion to find the bottleneck of a program, such as a method
invoked a lot of times, and then compile and optimize it. A static compiler can’t make such judgments because it
can’t obtain runtme information. Dynamic compilation can continually make adjustments as a program runs.

Inlining frequently-called small methods is one of the important optimizations performed by HotSpot. A
little method spends a large part of its excution time in entering and exiting, while inlining the method will save
the overhead of the method call. Inlining saves the run time of a program but increases the size. To gain the
most improvements in performance with an acceptable size penalty, HotSpot utilizes runtime information to look
for frequently-called methods and inlines them.

The architecture supperts Java as a platform-independent, dynemic language. And it doesn’t break up
Java’s security architecture.

3.3 Disadvantages

With dynamic compilation technology, Java's applications are stili not up to the performance of a compiled
C program. Additionally. it is possible to occur that the dynamic compiler decides to optimize a method when
the method finishes executing for the last time, which obviously wastes the time for optimizing.

In some cases such as a 100 percent computing-intensive program, a good JIT compiler will provide better
performance than the dynamic compiler because the JIT doesn’t wait before optimizing and it optimizes every-
thing preemptively.

Compared with native compilers, the optimization technology adopted by a dynamic compiler is limited

because the optimization must be performed rapidly.

[1.2.8.9]

4 Compiler System with Native Compiler Technelogy

Client’s and server’s requirements are different . clients usually execute Java applets or small applications,
while servers usually execute large, sophisticated enterprise application with high performance. Due to Clients’
platform variety. Java applets or applications that are downloaded to execute on client-side should be platform-
independent, while the applications executed on servers should fully exploit advanced capabilities of server ma-
chines.

Forenamed Java compiler architectures all provide platform-independent and dynamic load characteristics.
JIT and HotSpot technology are fit for processing client applications. Their speed-ups are limited because the
optimization techniques that are available are limited , so they ean’t meet the performance requirement of sophis-
ticated enterprise server-side applications. To meet the requirements of server-side Java applications, one
proven way is to adopt native compiler technology.

4.1 Architecture and working process

According to the difference of the input, we can divide native compilers into two kinds: source code native

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— 176 — Journal of Software SAFFM 2000,11(2)

compilers and bytecode native compilers. Source code native compilers are high performance compilers that con-
vert Java source codes into static executables, while bytecode native compilers are high performance compilers

that convert Java bytecodes into native executables. According to whether they support dynamic lcading or not,

Deployment and| Wwe can divide native compilers into two kinds: static native

Java source codes Native .
. * managermen N
Java bytecodes—y compiler o compilers and dynamic native compilers. Static native compilers
DLL | exe , . . .
don’t support Java’s dynamic loading characteristic, while dy-
AOQT Hi namic native compilers do.

DLL perfomance .))]]

| native Figure 4 illustrates the architectures of a Java native compil-
executable . . -

Java bytecc)des__cor{llprli‘ler v with VM er system. It's a mixed architeclure, We can say that it includes

a source code native compiler and a bylecode native compilers or
Fig.4 The architecture includes a static native compiler and a dynamic native compiler.
The input is Java source codes or bytecodes. The output is the combinzation of the following

(1) highly optimized native executables;

(2) “Ahead Of Time”{AOT) dynamic load libraries {which are native code in the form of DLLs in Win-
dows ar shared libraries in Unix}.

To improve performance, static native compilers can be improved in four aspects,

(1) Executing front-end object dispatch analysis;

(2) Adopting machine independent front-end optimization techniques

(3) Adopting machine-specific hack-end optimization techniques;

(45 Improving run-time performance including garbage collection.

Object dispatch analysis is very difficult to implement, but it is very effective because performance can be
improved 200% to 400% with it.

Static native compilers have drawbacks., They don’t support Java's dynamic characteristic. Programmers
have to stop, recompile and reload the applications in order to meke changes. Dynamic native compilers can
solve the problem. They can support dynamic updating of executables via Java bytecodes or AOT dynamic load
libraries. They have three means to perform dynamic compilation, and the three means can be combined to per-
form on a single system:

(1) fully optimized native code with hooks for possible updatings

(2) system updates via precompiled native code libraries (or DLLs);

€3) J1T-style system updates via bytecode loading.

4.2 Advantages

Compared with JIT compilers, native compilers avoid the overhead of loading bytecodes and on-the-fly com-
pilation time., Because native compilers optimize codes statically before the application is executed, they have
enough time to perform a lot of optimizations that can’t be performed by JIT or the compilers with adaptive opti-
mization technology. With native compilers, the Jave program execution speed could be essentially equivalent to
the C++ program.

Native compilers can hot-start applications. With native compilers, an application can start running at full
speed because it has been optimized. With HotSpot, the application will start off cold and then dynamically
adapt itself and get faster as it locates the hot spots.

Compiling to native form can also protect intellectual property because bytecodes are much easier to be de-
compiled into spurce codes.

4.3 Disadvantages

Source code native compilers ruin Java’s portability. Native compilers also reduce Java’s security.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

EHA F . Java BIERFHAY Java il — 177 —

Additionally, native compilers can’t perform dynamic optimizations instructed by runtime information like

HotSpo:, so it can’t adjust speed performance during execution.
5 Compiler System with Transiator Technology!!#*~1!

5.1 Working process
Many higher-level language compilers, especially C compilerss are very matures and they can perform vari-
ous optimizations and vield fully optimized native executables now. To utilize the existing higher-level language
optimization compilers 1o compile Java programs, a translator is needed to translate Java language to the higher-
level language. Translators that translate bytccodes to C source codes are typical representatives. The compila-
tion process is shown in Fig. 5. The rcason of making bytecodes as the input of transiators is to keep Java's
portability.
Jave source codes —{favar}—Bytecode —{Translator]
++—[C romplert— € Source todes |

structure definitions, and a class initializer macro. The ¢ Fig. 5 The compilation process

Translation of a class file (bytecodes) produces a . h

fiie and a .¢ Fle. The . h file contains function prototypes,

file contains structure initializations and executable method code. The . ¢ file references its own . h file and the .
h files of other classes referenced by the class file. Each Java method produces a C function with corresponding
parameters. Instance methods also include a parameter corresponding to the instance object, Method names are
modified if necessary (¢ produce names that are legal in C language). Positions on the Java Virtnal Machine
(JVM? stack are mapped to sets of local variables. Stack gperations of the JVM code become assighments in the
generated C code. Control flow is handled using conditional and unconditional goto statements, Generated labels
correspond to each point of the JYM code that is a jump target. Exceptions are handled using setjmp and
longjmp. Caught exceptions are dispatched by a switch statement at the head of the method. The JVM ret aper-
ation. actually a computed goto, is also handled using the switch statement. Thread support is built on the op-
erating systems’ threads impiementation,

Then .¢ files and . h files generated by a translator are compited to generate native executable programs by
the existing C compilers.
5.2 Advantages

The compiler architecture supports Java’s portability, Because it translates Java class files into C source
codes, it can make use of C optimizing compiler to perform sophisticated optimization to produce high perfor-
mance native executables of Java applications, and it can avoid the overhead of interpreting or JIT compiling Ja-
va bytecodes by directly generating native executable programs. With the compiler systems, the execution speed
of Java applications is close to that of equivalent programs written in C or C+ -+ and the performance require-
ment of server-side applications can be mer, The compiler systems raise performance far above that of compilers
with interpreters or JIT, Compiling to native form can also protect irtellectual property.
5.3 Disadvantages

The compiler architecture can’t compile applets. It does not support dynamic loading, and all needed class-
es must be linked into the executable file. It ruins Java’s security architecture, and reduces Java applications’

security. It is inconvenient for debugging Java programs.

6 Discussion

Besides the compilation means adopted by Java, garbage collection and thread synchronization are also im-
portant factors that affect Java's performance. Garbage collection and multithread are superiorities of Java over

C/C—+, but they consume = lot of resource and quanrities of runtime. Tt is estimated that garbage collection

© HIEERES AT hip:/ www. jos. org. cn

— 178 — Journal of Software HAFFIH/ 2000,11(2)

takes up about 20 percent of the average application’s run time. while thread synchronization takes up about 2¢
percent. The time can’t be reduced by adopting different compilers and optimization technology™® .. To reduce
the time spent in garbage collection and thread synchronization, we should design more eflective algorithms of
garbage collection and thread synchronization, which will make a drastic improvement in Java program’s run-
time performance.

At present, developers are mainly commirted to study the optimization technology during bytecodes® run-
time, but bytecodes generated by javac of JDK are not highly optimized codes because there is little optimization
such as inlining static, final, private methods to be performed™. In fset, highly optimized bytecodes can be
generated through adopting all kinds of optimization during generating . class file, and they will improve Java
programs’ runtime performance greatly.

To sum up, Java is a very promising programming language. Java will have wider and wider application

with the improvement of performance.

References
1 David Flanagzn. Java in a Nutshell. O'Reilly & Associates, 159§
2 Louden K C. Compiler Construction Principles and Practice. PWS Publishing Company, 1996
3 Lindholm T, Yellin F. The Java Virtual Machine Specification, Addisipn—Wesley, 1997
1 Armstrong E. HotSpot: a new breed of virtual machine. Javaworld on Line, 1958
5 Java and the Java Runtime Environment. hitp://www. sun. com/salaris /‘ava/wp-java/2, html
§ Cramer T er af. Compiling Java just in time. IEEE Micre, May/June 1§97,17(3),36~43
7 Smith (G 8. Java’s new virtual machine, Javaworld on Line. 1897
8 Howard R R. Developing and Deploying Server-hosted Applications with Java, Tower]’s White-paper, 1987
2 Gosling J+ Jor B, Steele G, The Java Language Specification. Addision Wesley Publishing Company, 1996

—_
=)

Yukio Andch. j2c. 1996, URL. hrip, //www. webcity. co. jp/info/andeh/java/j2c. html

11 Toba. URL: http.//www. cs, arizona, edu/sumatra/toba/

Java IRIFEFH A S Java M6
YRE BE

CHE BT FR JLa 100080

WE T Jave GE A AR A Jeva B A RS £ LA AR AR 048 AU R 0 (T %
A G 1AL A 638 B R A SRR Rt T A AL T Ao T T B AT K
Mpde 2 45 . FIWHL AT T 45,1342 /3 4 K 54 Java 1 £k 45 oh.

KEE Java EAEIET,HERA, M E.

REEASHE TP

© hIEREY

SEAFIEII httped/ www. jos. org. cn

