• 当期目录
  • 优先出版
  • 过刊浏览
  • 点击排行
  • 下载排行
  • 综述文章
  • 专刊文章
  • 分辑系列
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    2024,35(2):513-531, DOI: 10.13328/j.cnki.jos.006944
    [摘要] (563) [HTML] (186) [PDF 3.72 M] (857)
    摘要:
    代码注释作为辅助软件开发群体协作的关键机制, 被开发者所广泛使用以提升开发效率. 然而, 由于代码注释并不直接影响软件运行, 使其常被开发者忽视, 导致出现代码注释质量问题, 进而影响开发效率. 代码注释中存在的质量问题会影响开发者理解相关代码, 甚至可能产生误解从而引入代码缺陷, 因此这一问题受到研究者的广泛关注. 采用系统文献调研, 对近年来国内外学者在代码注释质量问题上的研究工作进行系统的分析. 从代码注释质量的评价维度、度量指标以及提升策略这3个方面总结研究现状, 并提出当前研究所存在的不足、挑战及建议.
    2024,35(2):532-580, DOI: 10.13328/j.cnki.jos.006953
    [摘要] (439) [HTML] (152) [PDF 2.62 M] (715)
    摘要:
    测试用例集的缺陷检测有效性指测试集能够在多大程度上检测出软件中存在的缺陷. 如何评价测试集的缺陷检测有效性是一个重要问题. 覆盖率和变异得分是两个最重要和最广泛使用的测试集有效性度量. 为量化测试集的缺陷检测能力, 研究人员对测试集有效性评价进行了大量研究并且取得了较大的进展. 与此同时, 现有研究存在不一致的结论, 该领域依然存在一些亟待解决的挑战. 对多年来国内外学者在测试集有效性评价领域的研究成果进行系统性的梳理和总结. 首先, 阐述测试集有效性评价研究中的问题. 然后, 介绍并分析基于覆盖率和基于变异得分的测试集有效性的评价以及介绍测试集有效性评价在测试集优化中的应用. 最后, 指出测试集有效性评价研究中面临的挑战并给出建议的研究方向.
    2024,35(2):581-603, DOI: 10.13328/j.cnki.jos.006975
    [摘要] (923) [HTML] (155) [PDF 1.08 M] (1015)
    摘要:
    开源软件已经成为现代社会的一项关键基础设施, 支撑着几乎所有领域的软件开发. 通过安装依赖、API调用、项目fork、文件拷贝和代码克隆等形式的代码复用, 开源软件之间形成了错综复杂的供应(依赖)关系网络, 被称为开源软件供应链. 一方面, 开源软件供应链为软件开发提供了便利, 已然成为软件行业的基石. 另一方面, 上游软件的风险可以沿着开源软件供应链波及众多的下游软件, 使开源软件供应链呈现牵一发而动全身的特点. 开源软件供应链近年来逐渐成为学术界和工业界的关注焦点. 为了帮助增进研究人员对开源软件供应链的认识, 从整体性的角度, 对开源软件供应链给出定义和研究框架; 然后, 对国内外的研究工作进行系统文献调研, 总结结构与演化、风险传播与管理、依赖管理3个方面的研究现状; 最后, 展望开源软件供应链的研究挑战和未来研究方向.
    2024,35(2):604-628, DOI: 10.13328/j.cnki.jos.006981
    [摘要] (688) [HTML] (191) [PDF 7.13 M] (943)
    摘要:
    关注根据自然语言描述生成相关代码片段的代码生成(code generation)任务. 在软件开发过程中, 开发人员常常会面临两种情形. 一种是通用功能的实现, 需要开发人员编写大量重复且技术含量较低的代码; 另一种是依赖于特定任务要求, 需要开发人员查询文档或使用其他工具才能完成的代码编写工作. 代码生成作为最直接辅助开发人员完成编码的工作受到学术界和工业界的广泛关注. 让机器理解用户需求, 自行完成程序编写也一直是软件工程领域重点关注的问题之一. 近年来, 随着深度学习在软件工程领域任务中的不断发展, 尤其是预训练模型的引入使得代码生成任务取得了十分优异的性能. 系统梳理当前基于深度学习的代码生成相关工作, 并将目前基于深度学习的代码生成方法分为3类: 基于代码特征的方法、 结合检索的方法以及结合后处理的方法. 第1类是指使用深度学习算法利用代码特征进行代码生成的方法, 第2类和第3类方法依托于第1类方法进行改进. 依次对每一类方法的已有研究成果进行系统的梳理、 分析与总结. 除此之外, 汇总并分析已有的代码生成工作中常用的语料库与评估方法, 以便于后续研究进行实验设计. 最后, 对代码生成方法研究进展进行总结, 并针对未来值得关注的研究方向进行展望.
    2024,35(2):629-674, DOI: 10.13328/j.cnki.jos.006983
    [摘要] (635) [HTML] (141) [PDF 2.26 M] (576)
    摘要:
    在“人-机-物”三元融合、泛在计算的时代蓝海下, “开放多变”“需求多样”和“场景复杂”的软件部署和运行环境对开源软件库生态的治理技术提出了更多需求和更高期望. 为进一步推动构建可信软件供应链生态, 围绕泛在计算模式、打造自主可控的技术体系, 聚焦于开源软件库管理生态, 收集近20多年来(2001–2023)发表于软件工程领域较高影响力的学术期刊和会议的348篇论文, 对开源软件库生态治理技术的研究工作进行梳理. 讨论开源软件库生态的建模与分析、演化与维护、质量保证和管理等方面的工作, 总结研究现状、问题、挑战与趋势.
    2024,35(2):675-710, DOI: 10.13328/j.cnki.jos.006933
    [摘要] (804) [HTML] (140) [PDF 12.80 M] (1014)
    摘要:
    图数据, 如引文网络, 社交网络和交通网络, 广泛地存在现实生活中. 图神经网络凭借强大的表现力受到广泛关注, 在各种各样的图分析应用中表现卓越. 然而, 图神经网络的卓越性能得益于标签数据和复杂的网络模型, 而标签数据获取困难且计算资源代价高昂. 为了解决数据标签的稀疏性和模型计算的高复杂性问题, 知识蒸馏被引入到图神经网络中. 知识蒸馏是一种利用性能更好的大模型(教师模型)的软标签监督信息来训练构建的小模型(学生模型), 以期达到更好的性能和精度. 因此, 如何面向图数据应用知识蒸馏技术成为重大研究挑战, 但目前尚缺乏对于图知识蒸馏研究的综述. 旨在对面向图的知识蒸馏进行全面综述, 首次系统地梳理现有工作, 弥补该领域缺乏综述的空白. 具体而言, 首先介绍图和知识蒸馏背景知识; 然后, 全面梳理3类图知识蒸馏方法, 面向深度神经网络的图知识蒸馏、面向图神经网络的图知识蒸馏和基于图知识的模型自蒸馏方法, 并对每类方法进一步划分为基于输出层、基于中间层和基于构造图知识方法; 随后, 分析比较各类图知识蒸馏算法的设计思路, 结合实验结果总结各类算法的优缺点; 此外, 还列举图知识蒸馏在计算机视觉、自然语言处理、推荐系统等领域的应用; 最后对图知识蒸馏的发展进行总结和展望. 还将整理的图知识蒸馏相关文献公开在GitHub平台上, 具体参见: https://github.com/liujing1023/Graph-based-Knowledge-Distillation.
    2024,35(2):711-738, DOI: 10.13328/j.cnki.jos.007006
    [摘要] (384) [HTML] (141) [PDF 1.99 M] (672)
    摘要:
    近年来, 基于环境交互的强化学习方法在机器人相关应用领域取得巨大成功, 为机器人行为控制策略优化提供一个现实可行的解决方案. 但在真实世界中收集交互样本存在高成本以及低效率等问题, 因此仿真环境被广泛应用于机器人强化学习训练过程中. 通过在虚拟仿真环境中以较低成本获取大量训练样本进行策略训练, 并将学习策略迁移至真实环境, 能有效缓解真实机器人训练中存在的安全性、可靠性以及实时性等问题. 然而, 由于仿真环境与真实环境存在差异, 仿真环境中训练得到的策略直接迁移到真实机器人往往难以获得理想的性能表现. 针对这一问题, 虚实迁移强化学习方法被提出用以缩小环境差异, 进而实现有效的策略迁移. 按照迁移强化学习过程中信息的流动方向和智能化方法作用的不同对象, 提出一个虚实迁移强化学习系统的流程框架, 并基于此框架将现有相关工作分为3大类: 基于真实环境的模型优化方法、基于仿真环境的知识迁移方法、基于虚实环境的策略迭代提升方法, 并对每一分类中的代表技术与关联工作进行阐述. 最后, 讨论虚实迁移强化学习研究领域面临的机遇和挑战.
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    优先出版日期:  2024-02-28 , DOI: 10.13328/j.cnki.jos.007065
    摘要:
    图数据在现实应用中普遍存在, 图神经网络(GNN)被广泛应用于分析图数据, 然而 GNN的性能会被图结构上的对抗攻击剧烈影响. 应对图结构上的对抗攻击, 现有的防御方法一般基于图内聚先验进行低秩图结构重构. 但是现有的图结构对抗防御方法无法自适应秩真值进行低秩图结构重构, 同时低秩图结构与下游任务语义存在错配. 为了解决以上问题, 基于过参数化的隐式正则效应提出过参数化图神经网络(OPGNN)方法, 并形式化证明所提方法可以自适应求解低秩图结构, 同时证明节点深层表征上的过参数化残差链接可以有效解决语义错配. 在真实数据集上的实验结果表明, OPGNN方法相对于现有基线方法具有更好的鲁棒性, 同时, OPGNN 方法框架在不同的图神经网络骨干上如 GCN、APPNP 和 GPRGNN 上显著有效.
    优先出版日期:  2024-02-05 , DOI: 10.13328/j.cnki.jos.007067
    摘要:
    基于深度学习的代码搜索方法通过计算代码与描述语句各自表征的相似程度, 实现代码搜索任务. 然而此类方法并未考虑代码和描述语句之间真实存在的相关性概率分布. 针对此问题, 将经典概率模型中代码和描述语句的相关性概率分布与向量空间模型中特征提取相结合, 提出基于生成对抗策略的代码搜索方法. 所提方法首先设计代码和描述语句的特征编码器用于特征提取. 接着采用生成对抗策略, 将代码和描述语句之间的概率分布应用于生成器和判别器的交替训练, 同时实现对代码编码器和描述语句编码器的优化, 生成高质量的代码表征和描述语句表征用于代码搜索任务. 最后在公开的数据集上进行实验验证, 结果表明所提出的方法相比于DeepCS方法在Recall@10, MRR@10和NDCG@10指标上分别提升8.4%、32.5%和24.3%.
    优先出版日期:  2024-02-05 , DOI: 10.13328/j.cnki.jos.007045
    [摘要] (100) [HTML] (0) [PDF 1.63 M] (153)
    摘要:
    网络拥塞控制方法是决定网络传输性能的关键因素. 近几年, 网络不断普及、网络带宽不断增长、用户对网络性能的需求不断提升, 为拥塞控制算法的设计带来挑战. 为适应不同的网络环境, 近期不少新颖的拥塞控制算法被研究者们提出来, 极大地提升网络的传输性能, 改善用户体验. 综述最新拥塞控制算法设计思想, 将其分为预约调度式、直接测量式、基于机器学习式以及迭代探测式4大类, 分别介绍相应的代表性拥塞控制算法, 并进一步对各种拥塞控制思想方法的优缺点进行对比和分析, 最后展望拥塞控制的未来发展方向, 以启发该领域的研究.
    优先出版日期:  2024-02-05 , DOI: 10.13328/j.cnki.jos.007055
    摘要:
    检测JPEG (joint photographic experts group)同步重压缩是数字图像取证中一项具有挑战性的任务. 已有的研究提出了一些能够有效检测同步JPEG重压缩的方法, 但这些方法基本上都是在JPEG解压缩过程中获取的特征, 如果以BMP格式保存同步JPEG重压缩图像, 则这些方法将难以直接应用. 为了解决该问题, 提出一种基于双阈值的量化步长估计方法, 从而获取量化表并提取特征. 此外, 根据质量因子100时JPEG压缩的特殊性定义最小误差, 通过去除特征中的最小误差, 进一步提高特征的检测性能. 最后, 基于反量化后JPEG系数的收敛特性提取一阶相对误差特征, 进一步提高所提方法在质量因子较低时的检测性能. 实验结果表明, 所提方法在不同质量因子时的性能均优于当前先进算法.
    优先出版日期:  2024-02-05 , DOI: 10.13328/j.cnki.jos.007062
    摘要:
    口语理解是任务型对话系统的关键任务, 主要由语义槽填充和意图识别两个子任务组成. 目前主流的方法是对语义槽填充和意图识别进行联合建模. 虽然这种方法在语义槽填充和意图识别上都取得了不错的效果, 但依然存在联合建模中意图识别和语义槽填充交互过程的错误传播问题以及多意图场景下多意图信息与语义槽信息的错误对应问题. 针对上述问题, 提出一种基于图注意力网络的多意图识别与语义槽填充联合模型(WISM). WISM模型通过细粒度(单词级)意图与语义槽建立单词级别一对一映射关系以修正多意图信息与语义槽之间的错误对应关系, 然后通过构建单词-意图-语义槽的交互图, 并利用细粒度下的图注意力网络建立两个任务之间的双向联系以此来降低交互过程中错误传播问题. 在MixSINPS和MixATIS数据集上的实验结果表明, WISM相较于现有的最新模型在语义准确率分别提高2.58%和3.53%. 所提模型在提高语义准确率的同时展示了多意图信息与语义槽之间的映射关系.
    优先出版日期:  2024-02-05 , DOI: 10.13328/j.cnki.jos.007064
    摘要:
    时序图数据是一类边上带有时间戳信息的图数据. 在时序图数据中, 季节突发性子图是在多个时间周期内具有突发性特征的稠密子图, 它可以用于社交网络中的活动发现和群体关系分析. 然而以前大多数的研究主要集中在识别没有时间信息的网络中的稠密子图. 为此, 提出一种极大($ \omega, \theta $)-稠密子图模型对时序图中的季节突发性子图进行建模. 所提模型表示时序图中在至少$ \omega $个长度不小于$ \theta $的时间段内快速累积密度的子图. 为了挖掘出时序图中所有的极大($ \omega ,\theta $)-稠密子图, 将该类挖掘问题转化为一个混合的整数规划问题, 包括挖掘最稠密子图和寻找突发值最大化时间段集合两个子问题, 并给出有效的解决方案. 进一步基于key-核模型和动态规划思想设计两种优化策略来提升算法的性能. 实验表明所提模型能够真实地反映现实世界中具有季节突发性的行为模式. 同时在5个真实时序网络中验证了所提算法的有效性、效率和可扩展性.
    优先出版日期:  2024-02-05 , DOI: 10.13328/j.cnki.jos.007031
    摘要:
    物联网设备的使用范围正在不断扩张. 模型检测是提升这类设备可靠性和安全性的有效手段, 但常用的模型检测方法不能很好地刻画这类设备常见的跨空间移动和通信行为. 为此, 提出一种面向物联网设备移动与通信行为的建模及验证方法, 以实现对这类设备时空相关性质的验证. 通过将推拉动作和全局通信机制融入ambient calculus, 提出全局通信移动环境演算(ACGC)并给出了ACGC对ambient logic的模型检测算法; 在此基础上, 提出描述物联网设备移动和通信行为的移动通信建模语言(MLMC), 并给出将MLMC描述转换为ACGC模型的方法; 进一步地, 实现模型检测工具ACGCCk以验证物联网设备的性质是否得到满足, 并通过一些优化加快检测速度; 最后, 通过案例研究和实验分析阐明所提方法的有效性.
    优先出版日期:  2024-01-31 , DOI: 10.13328/j.cnki.jos.007063
    摘要:
    随着互联网信息技术的发展, 社交网络、计算机网络及生物信息网络等领域涌现海量大规模图数据. 鉴于传统图数据管理技术在处理大规模图时存在存储及性能方面的局限, 大规模图的分布式处理技术已成为图数据库领域的研究热点, 并得到工业界和学术界的广泛关注. 图的核分解用于计算图中所有顶点的核值, 有助于挖掘重要图结构信息, 在社区搜索、蛋白质结构分析和网络结构可视化等诸多应用中发挥着关键作用. 当前以顶点为中心计算模式的分布式核分解算法中采用一种广播的消息传递机制, 一方面, 存在大量的冗余通信及计算开销; 另一方面, 处理大规模图核分解过程中易产生内存溢出问题. 为此, 分别提出基于全局激活和层次剥离计算框架, 并提出分布式核分解新算法, 通过引入基于顶点核值局部性特点的消息剪枝策略和以计算节点为中心的计算新模式, 保证算法有效性的同时提升其性能. 在国家超级计算长沙中心分布式集群上, 分别针对大规模真实和合成数据集, 算法总耗时性能提升比例为37%–98%, 验证所提模型和算法的有效性和高效性.
    优先出版日期:  2024-01-31 , DOI: 10.13328/j.cnki.jos.007056
    摘要:
    时间序列预测模型已广泛应用于日常生活中的各个行业, 针对这些预测模型的对抗攻击关系到各行业数据的安全性. 目前, 时间序列的对抗攻击多在全局范围内进行大规模扰动, 导致对抗样本易被感知. 同时, 对抗攻击的效果会随着扰动幅度的降低而明显下降. 因此, 如何在生成不易察觉的对抗样本的同时保持较好的攻击效果, 是当前时间序列预测对抗攻击领域亟需解决的问题之一. 首先提出一种基于滑动窗口的局部扰动策略, 缩小对抗样本的扰动区间; 其次, 使用差分进化算法寻找最优攻击点位, 并结合分段函数分割扰动区间, 进一步降低扰动范围, 完成半白盒攻击. 和已有的对抗攻击方法在多个不同深度模型上的对比实验表明, 所提出的方法能够生成不易感知的对抗样本, 并有效改变模型的预测趋势, 在股票交易、电力消耗、太阳黑子观测和气温预测这4个具有挑战性的任务中均取得了较好的攻击效果.
    优先出版日期:  2024-01-31 , DOI: 10.13328/j.cnki.jos.007052
    摘要:
    图像分类算法的性能受限于视觉信息的多样性和背景噪声的影响, 现有研究通常采用跨模态约束或异构特征对齐算法学习可判别力强的视觉表征. 然而, 模态异构带来的特征分布差异等问题限制了视觉表征的有效学习. 针对该问题, 提出一种基于跨模态语义信息推理和融合的图像分类框架(CMIF), 引入图像语义描述及统计先验知识作为特权信息, 使用特权信息学习范式在模型训练阶段指导图像特征从视觉空间向语义空间映射, 提出类感知的信息选择算法(CIS)学习图像的跨模态增强表征. 针对表征学习中的异构特征差异性问题, 使用部分异构对齐算法(PHA)实现视觉特征与特权信息中提取的语义特征的跨模态对齐. 为进一步在语义空间中抑制视觉噪声带来的干扰, 提出基于图融合的CIS算法选取重构语义表征中的关键信息, 从而形成对视觉预测信息的有效补充. 在跨模态分类数据集VireoFood-172和NUS-WIDE上的实验表明, CMIF能够学习鲁棒的图像语义特征, 并且能够作为通用框架在基于卷积的ResNet-50和基于Transform架构的ViT图像分类模型上取得稳定的性能提升.
    优先出版日期:  2024-01-31 , DOI: 10.13328/j.cnki.jos.007053
    摘要:
    手绘草图通过绘制简单的线条直观呈现用户的创作意图, 支持用户采用手绘的方式快速表达思维过程及设计灵感, 创作目标图像或视频. 随着深度学习的发展, 基于草图的视觉内容生成通过学习草图和视觉对象(即图像和视频)的特征分布进行跨领域特征映射, 实现图像自动生成草图以及草图自动生成对应的图像或视频, 与传统的人工创作方式相比有效地提高了生成的效率和多样性, 成为计算机视觉、图形学领域的重要研究方向, 并且在设计、视觉创作等领域具有重要作用. 综述基于草图的视觉内容生成深度学习方法的研究现状和发展趋势, 按照视觉对象的不同将现有工作分为基于草图的图像生成和基于草图的视频生成方法, 并结合草图和视觉内容跨域生成、风格转化、视觉内容编辑等任务对生成模型进行详细分析, 然后比较和总结常用的数据集、针对草图数据不足提出的扩充方法以及生成模型的评估方法, 进一步通过草图在视觉内容生成应用中面临的挑战及生成模型未来发展方向对研究趋势进行展望.
    优先出版日期:  2024-01-31 , DOI: 10.13328/j.cnki.jos.007066
    摘要:
    Raft是最为流行的分布式共识协议之一. 自2014年被提出以来, Raft协议及其变体在各种分布式系统中被广泛应用. 为了证明Raft协议的正确性, 开发者使用TLA+形式化规约对协议设计进行了建模和验证. 但由于抽象的形式化规约与实际的系统实现源码间存在鸿沟, 基于Raft实现的分布式系统中仍然会违背协议设计并引入复杂的缺陷. 设计基于TLA+形式化规约的测试方法来检测Raft协议实现中的缺陷. 具体而言, 将形式化规约匹配到相应的系统实现, 并用形式化规约所定义的状态空间来指导系统实现的测试过程. 为评估所提方法的可行性和有效性, 针对两个不同的Raft实现进行系统化测试, 并发现3个未知缺陷.
    优先出版日期:  2024-01-24 , DOI: 10.13328/j.cnki.jos.007051
    摘要:
    异构图是一种具有多种类型节点或边的图, 也称异构信息网络, 其常被用来建模现实世界中具有丰富特征和关联模式的系统. 异构节点间的链接预测是网络分析领域的一个基本任务. 近年来, 异构图神经网络技术的发展极大地促进了链接预测任务的进步, 其通常将此任务当作节点间的特征相似性分析或基于成对节点特征的二分类问题. 然而, 现有的异构图神经网络技术在进行节点特征表示学习时, 往往仅关注相邻节点间的关联或基于元路径的结构信息. 这使得其不仅难以捕捉异构图中固有的环结构所蕴含的语义信息, 也忽视了不同层次的结构信息之间的互补性. 为解决上述问题, 设计一种基于多层次图结构的级联图卷积网络CGCN-MGS, 其由基于邻居、元路径和环3种不同层次图结构的图神经网络组成, 能从多层次特征中挖掘出丰富、互补的信息, 提高所学节点特征对节点语义和结构信息的表征能力. 多个基准数据集上的实验结果表明, CGCN-MGS在异构图的链接预测任务上能够取得目前最优的性能结果.
    优先出版日期:  2024-01-24 , DOI: 10.13328/j.cnki.jos.007080
    [摘要] (221) [HTML] (0) [PDF 4.43 M] (188)
    摘要:
    恶意软件检测是网络空间安全研究中的热点问题, 例如Windows恶意软件检测和安卓恶意软件检测等. 随着机器学习和深度学习的发展, 一些在图像识别、自然语言处理领域的杰出算法被应用到恶意软件检测, 这些算法在大量数据下表现出了优异的学习性能. 但是, 恶意软件检测中有一些具有挑战性的问题仍然没有被有效解决, 例如, 基于少量新颖类型的恶意软件, 常规的学习方法无法实现有效检测. 因此, 小样本学习(few-shot learning, FSL)被用于解决面向小样本的恶意软件检测(few-shot for malware detection, FSMD)问题. 通过相关文献, 提取出FSMD的问题定义和一般流程. 根据方法原理, 将FSMD方法分为: 基于数据增强的方法、基于元学习的方法和多技术结合的混合方法, 并讨论每类FSMD方法的特点. 最后, 提出对FSMD的背景、技术和应用的展望.
    优先出版日期:  2024-01-24 , DOI: 10.13328/j.cnki.jos.007042
    [摘要] (190) [HTML] (0) [PDF 6.35 M] (241)
    摘要:
    近年来, 机器学习一直是被关注和探讨的研究热点, 被应用到各领域并在其中起着重要作用. 但随着数据量的不断增加, 机器学习算法训练时间越来越长. 与此同时, 量子计算机表现出强大的运算能力. 因此, 有研究人员尝试用量子计算的方法解决机器学习训练时间长的问题, 量子机器学习这一领域应运而生. 量子主成分分析、量子支持向量机、量子深度学习等量子机器学习算法相继被提出, 并有实验证明了量子机器学习算法有显著的加速效果, 使得量子机器学习的研究展现出逐步走高的趋势. 对量子机器学习算法进行综述. 首先介绍量子计算基础; 然后对量子监督学习、量子无监督学习、量子半监督学习、量子强化学习以及量子深度学习5类量子机器学习算法进行介绍; 接着对量子机器学习的相关应用进行介绍并给出了算法实验; 最后进行总结和展望.
    优先出版日期:  2024-01-24 , DOI: 10.13328/j.cnki.jos.007068
    摘要:
    目前, 大多数已发表的图像隐写分析方法都是针对灰度图像设计的, 因此这些方法无法有效检测广泛应用于社交媒体的彩色图像. 为解决这一问题, 提出一种基于中心差分卷积和注意力增强的彩色图像隐写分析方法. 首先设计一个包含预处理, 特征提取和特征分类这3个阶段的主干流. 在预处理阶段, 对输入的彩色图像进行颜色通道分离, 并串联各通道经过SRM滤波后的残差图. 在特征提取阶段, 构建3个基于中心差分卷积的卷积块来提取更深层的隐写分析特征图. 在分类阶段, 使用全局协方差池化和带有丢弃操作的两个全连接层来对载体和载密图像进行分类. 此外, 为了进一步增强主干流在不同时期的特征表达能力, 在主干流的前期和后期分别引入一个残差空间注意力增强模块和一个通道注意力增强模块. 其中, 残差空间注意力增强模块首先使用Gabor滤波核对输入图像进行通道分离卷积再串联相应的残差, 然后通过空间注意力机制获取残差特征图的有效信息. 而通道注意力增强模块则通过获取通道间的依赖关系来增强模型最后的特征分类能力. 进行大量的对比实验, 结果表明所提出方法可以显著提高对彩色图像隐写的检测性能, 并取得当前最好的结果. 此外, 还进行相应的消融实验来验证所提出的网络架构的合理性.
    优先出版日期:  2024-01-24 , DOI: 10.13328/j.cnki.jos.007050
    摘要:
    图式区块链采用有向无环图(directed acyclic graph, DAG)的并行拓扑结构, 相较于基于串行拓扑结构的传统链式区块链, 能够显著提升系统性能, 已受到业界广泛关注. 然而, 现有图式区块链的共识协议与存储模型高度耦合, 缺乏灵活性, 难以适应多元化应用需求. 同时, 大部分图式区块链在共识协议层面上缺乏灵活性, 局限于概率性共识协议, 难以兼顾确认延迟和安全性, 尤其对于延迟敏感型应用很不友好. 为此, 提出弹性图式区块链系统ElasticDAG, 其核心思想是将存储模型和共识协议进行解耦, 让两者并行、独立地运行, 从而灵活适配多元化应用. 针对提升系统吞吐量和活性的需求, 为存储模型设计自适应区块确认策略和基于划分的确认区块排序算法; 针对降低交易确认延迟的需求, 设计低延迟DAG区块链混合共识协议. 实验结果表明, ElasticDAG原型系统在广域网下的吞吐量高达11 Mb/s, 并具有10秒级确认性能. 与OHIE相比, ElasticDAG在实现同等吞吐量的情况下, 可将确认延迟降低17倍; 与Haootia相比, ElasticDAG在实现同等共识延迟的情况下, 可将安全性从91.04%提升到99.999914%.
    优先出版日期:  2024-01-24 , DOI: 10.13328/j.cnki.jos.007059
    [摘要] (133) [HTML] (0) [PDF 4.23 M] (199)
    摘要:
    随着大数据和计算能力的快速发展, 深度学习技术取得巨大突破, 并迅速成为一个具有众多实际应用场景和活跃研究课题的领域. 为了满足日益增长的深度学习任务开发需求, 深度学习框架应运而生. 深度学习框架作为连接应用场景和硬件平台的中间部件, 向上支撑深度学习应用的开发, 帮助用户快速构造不同的深度神经网络模型, 向下深度适配各类计算硬件, 满足不同算力架构和环境下的计算需求. 作为人工智能领域的关键基础软件, 深度学习框架中一旦存在问题, 即使是一个只有几行代码的缺陷都可能导致在其基础上构造的模型发生大规模失效, 严重威胁深度学习系统安全. 作为第1篇以深度学习框架测试为主题的研究性综述, 首先对深度学习框架发展历程和基本架构进行介绍; 其次, 通过对55篇与深度学习框架测试研究直接相关的学术论文进行梳理, 对深度学习框架缺陷特性、测试关键技术和基于不同测试输入形式的测试方法这3个方面进行系统分析和总结; 针对不同测试输入形式的特点, 重点探究如何结合测试关键技术来解决研究问题; 最后对深度学习框架测试尚未解决的难点问题进行总结以及对未来值得探索的研究方向进行展望. 可以为深度学习框架测试研究领域的相关人员提供参考和帮助, 推动深度学习框架的不断发展成熟.
    优先出版日期:  2024-01-17 , DOI: 10.13328/j.cnki.jos.007058
    摘要:
    由于深度学习领域的不断进步, 人们对用协同查询处理(CQP)技术扩展关系数据库以处理涉及结构化和非结构化数据的高级分析查询越来越感兴趣. 最先进的CQP方法使用用户定义函数(UDFs)来实现深度神经网络(NN)模型来处理非结构化数据, 并使用关系操作来处理结构化数据. 基于UDF的方法简化了查询书写, 允许用户使用单一的SQL提交分析查询, 但要求在即席数据分析中能够根据所需性能指标手动选择合适且高效的模型, 这对用户提出了很高的挑战. 为了解决该问题, 提出基于声明式推理函数(DIF)的协同查询处理技术, 通过优化模型选择、执行方式、设备绑定等多个查询实现路径构建完整的协同查询处理框架. 基于所提研究设计的成本模型和优化规则, 查询处理器能够计算出不同查询计划的代价, 并自动选择最优的物理查询计划. 在4个数据集上的实验结果证实了提出的基于DIF的CQP方法的有效性和效率.
    优先出版日期:  2024-01-17 , DOI: 10.13328/j.cnki.jos.007049
    摘要:
    在白盒攻击环境下, 攻击者可以访问密码算法的实现过程, 观测算法运行的动态执行和内部细节, 并任意修改. 2002年Chow等人首次提出了白盒密码的概念, 利用查找表技术提出了AES算法和DES算法的白盒实现, 所采用的方法称为CEJO框架. 白盒实现将已有的密码算法进行编码混淆, 在白盒攻击环境下以软件的形式达到保护密钥的目的, 同时保证算法结果的正确性. SIMON算法是一种轻量级分组密码算法, 因其良好的软硬件实现性能被广泛应用于物联网设备中, 研究该算法的白盒实现具有重要现实意义. 给出SIMON算法的两种白盒实现. 第1种方案(SIMON-CEJO)采用经典的CEJO框架, 利用网络化编码对查找表进行保护, 从而混淆密钥. 该方案占用内存为369.016 KB, 安全性分析表明SIMON-CEJO方案可以抵抗BGE攻击和仿射等价算法攻击, 但不能抵抗差分计算分析. 第2种方案(SIMON-Masking)采用Battistello等人提出的编码方式, 对明文信息和密钥信息进行编码, 利用编码的同态性, 将异或运算和与运算转化为模乘运算和表查找操作; 最后进行解码, 得到对应的密文结果. 在算法运行过程中, 对与运算添加布尔掩码, 编码的随机性保护了真实密钥信息, 提高了方案抵抗差分计算分析和其他攻击的能力. SIMON-Masking占用内存空间为655.81 KB, 基于勒让德符号的二阶差分计算分析的时间复杂度为O(n2klog2p). 这两种方案的对比结果表明, 经典的CEJO框架无法有效防御差分计算分析, 运用新型编码并添加掩码是一种有效的白盒实现方法.
    优先出版日期:  2024-01-17 , DOI: 10.13328/j.cnki.jos.007043
    摘要:
    应用程序图形用户界面 (graphical user interface, GUI/UI) 为应用程序与其终端用户提供了一座可视化的桥梁, 用户可以通过交互操作使用应用程序. 随着移动应用程序的发展, 兼具美学与交互设计的图形用户界面也变得越来越复杂, 用户也更加关注应用程序的可访问性和可用性. 然而图形用户界面的复杂性也对其设计与实现带来巨大的挑战. 由于用户对于移动设备的自定义设置以及不同的设备型号和屏幕分辨率导致用户界面显示问题频繁发生. 例如由于软件或硬件兼容性, 在不同设备上进行界面渲染时总会出现文本交叠、组件遮挡、图像丢失等显示问题. 它们对应用程序的可用性和可访问性产生负面影响, 导致用户体验不佳. 不幸的是, 对于移动应用程序用户界面显示问题的成因知之甚少. 为了应对这一挑战, 收集来自百度众测平台上的6729张具有用户界面显示缺陷的应用程序截图和GitHub中1016个缺陷报告提供的应用程序截图, 采用主题分析方法识别出9类用户界面显示缺陷, 然后对GitHub中1016个缺陷报告和其对应的缺陷代码进行分析, 总结出用户界面显示缺陷本质成因. 研究发现: (1) 在众测数据集中用户界面显示缺陷截图占总截图的62.1%; (2) 导致界面显示缺陷的原因中字体的缩放设置与组件的自适应设置不适配所占的比例较大; (3) 界面的布局设置会导致界面显示缺陷产生; (4) 硬件加速未开启会影响界面的正常显示.
    优先出版日期:  2024-01-10 , DOI: 10.13328/j.cnki.jos.007039
    摘要:
    图神经网络(graph neural network, GNN)是一种利用深度学习直接对图结构数据进行表征的框架, 近年来受到人们越来越多的关注. 然而传统的基于消息传递聚合的图神经网络(messaging passing GNN, MP-GNN)忽略了不同节点的平滑速度, 无差别地聚合了邻居信息, 易造成过平滑现象. 为此, 研究并提出一种线性结构熵的图核神经网络分类方法, 即KENN. 它首先利用图核方法对节点子图进行结构编码, 判断子图之间的同构性, 进而利用同构系数来定义不同邻居间的平滑系数. 其次基于低复杂度的线性结构熵提取图的结构信息, 加深和丰富图数据的结构表达能力. 通过将线性结构熵、图核和图神经网络三者进行深度融合提出的图核神经网络分类方法, 它不仅可以解决生物分子数据节点特征的稀疏问题, 也可以解决社交网络数据以节点度作为特征所产生的信息冗余问题, 同时还使得图神经网络能够自适应调整对图结构特征的表征能力, 使其超越MP-GNN的上界(WL测试). 最后, 在7个公开的图分类数据集上实验验证所提出模型的性能优于其他的基准模型.
    优先出版日期:  2024-01-10 , DOI: 10.13328/j.cnki.jos.007040
    [摘要] (101) [HTML] (0) [PDF 1.14 M] (178)
    摘要:
    命名实体识别任务是信息抽取领域中的一个基础任务, 旨在定位句子中实体所在位置的边界, 并对该实体进行分类. 针对现有基于跨度检测的模型存在的嵌套实体边界模糊问题, 提出一种基于跨度边界感知的嵌套命名实体识别模型. 首先, 利用双仿射注意力机制, 捕获词元间的语义相关性, 进而生成跨度语义表示矩阵; 其次, 通过设计一种二阶对角邻域差分算子, 建立跨度语义差分机制, 以提取跨度间的语义差异信息. 此外, 引入一种跨度边界感知机制, 利用滑动窗口的局部特征提取能力, 强化跨度的边界语义差异, 从而准确定位实体跨度位置. 为验证模型的有效性, 在3个基准数据集上进行测试, 包括ACE04、ACE05和Genia数据集. 实验结果表明, 提出的模型在实体识别准确率的表现优于相关工作. 此外, 还设计消融实验和案例分析以验证提出的语义差分机制和跨度边界感知机制的有效性, 为进一步研究命名实体识别问题提供新的思路和实验证据.
    优先出版日期:  2024-01-10 , DOI: 10.13328/j.cnki.jos.007037
    摘要:
    面向人机物融合的泛在计算正成为软件发展的新需求和新趋势, 基于这种新形态计算模式的人机物融合应用将软件技术进一步拓展至对线下资源, 包括物理设备和人力资源的有效利用. 作为典型的人机物融合场景, 物理世界中设备资源与人力资源间的协作具有资源可选性、任务高频性、工人动态性的特点, 传统的资源调度技术无法有效应对该类型任务(简称为DHRC任务)中的调度需求. 为此, 提出一种面向设备与人力资源协作任务的优化调度方法, 所提方法分为设备资源调度和人力资源调度两个阶段. 在设备资源调度阶段, 提出基于NSGA-II 的设备资源调度算法, 在综合考虑任务距离、设备负载和设备位置周边工人人数等因素情况下实现任务对资源的优化选择. 在人力资源调度阶段, 提出基于DPSO的人力资源调度算法, 根据工人位置和协作依赖等因素实现对工人的优化选择以及相应的路径规划. 在模拟环境内的实验结果表明, 所提方法第1阶段的算法在效率上与对比算法相当, 在效用性上优于对比算法(离散粒子群优化算法). 第2阶段的算法在效率上与效用性上均优于对比算法(使用锦标赛机制改进的遗传算法).
    优先出版日期:  2024-01-10 , DOI: 10.13328/j.cnki.jos.007048
    [摘要] (180) [HTML] (0) [PDF 7.60 M] (208)
    摘要:
    数据库管理系统(DBMS)是用于高效存储、管理、分析数据的基础软件, 在现代数据密集型应用中起着举足轻重的作用. 数据库管理系统中存在的漏洞则对数据的安全性和应用的正常运行造成巨大威胁. 模糊测试是当前最为流行的动态漏洞检测技术之一, 它已经被应用于分析DBMS, 并发现许多漏洞. 分析DBMS的测试需求和难点, 提出对DBMS进行模糊测试的一般框架, 同时分析DBMS模糊测试工具面临的挑战和需要支持的维度; 接着从挖掘不同类型漏洞的角度介绍典型的DBMS模糊测试工具; 然后总结包括SQL表达式合成、代码覆盖追踪、测试准则构建在内的DBMS模糊测试的关键技术. 接着就测试的覆盖率, 生成测试用例的语法语义正确性和漏洞的发现能力对当前的几个流行模糊测试工具进行评估. 最后, 讨论当前DBMS模糊测试技术研究和实践中面临的问题, 并对未来的研究方向进行展望.
    优先出版日期:  2024-01-10 , DOI: 10.13328/j.cnki.jos.007060
    摘要:
    为解决用户私钥安全问题, 将秘密共享方法与边缘计算模式相结合, 提出一种面向用户的、实用的私钥保护框架, 并基于此框架设计针对国密SM2公钥密码的私钥保护方案, 将用户的SM2私钥通过秘密共享分成两个私钥份额, 分别由用户设备和边缘服务器持有. 当用户使用Web3应用服务需要执行公钥密码算法时, 用户设备和边缘服务器利用各自的私钥份额协同执行两方分布式SM2公钥密码算法, 在无需恢复原始私钥的情况下完成密码运算. 当用户设备或边缘服务器之一遭到攻击后, 用户通过份额更新算法更新私钥份额, 从而使存在泄漏风险的份额失效. 实验测试结果表明, 新方案的计算时长在现实环境中常用设备(手机、笔记本电脑)可接受的范围内.
    优先出版日期:  2024-01-03 , DOI: 10.13328/j.cnki.jos.007057
    摘要:
    目前情感分析的研究普遍基于大数据驱动型模型, 严重依赖高昂的标注成本和算力成本, 因此针对低资源场景下的情感分析研究显得尤为迫切. 然而, 存在的低资源场景下的情感分析研究主要集中在单个任务上, 这导致模型难以获取外部任务知识. 因此构建低资源场景下的连续情感分析任务, 旨在利用持续学习方法, 让模型随时间步学习多个情感分析任务. 这样可以充分利用不同任务的数据, 并学习不同任务的情感信息, 从而缓解单个任务训练数据匮乏问题. 认为低资源场景下的连续情感分析任务面临两大核心问题, 一方面是单个任务的情感信息保留问题, 另一方面是不同任务间的情感信息融合问题. 为了解决上述两大问题, 提出针对低资源场景下连续情感分析任务的持续注意力建模方法. 所提方法首先构建情感掩码Adapter, 用于为不同任务生成硬注意力情感掩码, 这可以保留不同任务的情感信息, 从而缓解灾难性遗忘问题. 其次, 所提方法构建动态情感注意力, 根据当前时间步和任务相似度动态融合不同Adapter抽取的特征, 这可以融合不同任务间的情感信息. 在多个数据集上的实验结果表明: 所提方法的性能显著超过了目前最先进的基准方法. 此外, 实验分析表明, 所提方法较其他基准方法具有最优的情感信息能力和情感信息融合能力, 并且能同时保持较高的运行效率.
    优先出版日期:  2024-01-03 , DOI: 10.13328/j.cnki.jos.007046
    [摘要] (156) [HTML] (0) [PDF 1.69 M] (345)
    摘要:
    智能合约是运行在区块链合约层的计算机程序, 能够管理区块链上的加密数字货币和数据, 实现多样化的业务逻辑, 扩展了区块链的应用. 由于智能合约中通常涉及大量资产, 吸引了大量攻击者试图利用其中的安全漏洞获得经济利益. 近年来, 随着多起智能合约安全事件的发生(例如TheDAO、Parity安全事件等), 针对智能合约的安全漏洞检测技术成为国内外研究热点. 提出智能合约安全漏洞检测的研究框架, 分别从漏洞发现与识别、漏洞分析与检测、数据集与评价指标这3个方面分析现有检测方法研究进展. 首先, 梳理安全漏洞信息收集的基本流程, 将已知漏洞根据基础特征归纳为13种漏洞类型并提出智能合约安全漏洞分类框架; 然后, 按照符号执行、模糊测试、机器学习、形式化验证和静态分析5类检测技术对现有研究进行分析, 并讨论各类技术的优势及局限性; 第三, 整理常用的数据集和评价指标; 最后, 对智能合约安全漏洞检测的未来研究方向提出展望.
    优先出版日期:  2024-01-03 , DOI: 10.13328/j.cnki.jos.007044
    摘要:
    由于多视图数据特征复杂, 多视图离群检测已经成为离群点检测中一个极具挑战性的研究课题. 多视图数据中存在3种类型的离群点, 分别为类离群点、属性离群点和类-属性离群点. 早期多视图离群点检测方法大多基于聚类假设, 当数据中没有聚类结构时很难检测出离群点. 近年来, 许多多视图离群点检测方法使用多视图一致的近邻假设来代替聚类假设, 但仍存在新增数据检测效率低的问题. 此外, 大多数现有的多视图离群点检测方法都是无监督的, 在模型学习过程中会受到离群点的影响, 处理高离群率的数据集时效果不佳. 为了解决这些问题, 提出一种用于高效多视图离群点检测的视图内重建和跨视图生成网络来检测3种类型的离群点, 所提方法包含视图内重建和跨视图生成两个模块. 通过使用正常数据训练, 所提出方法可以充分捕捉正常数据中每个视图的特征, 并较好地重建和生成相应的视图. 此外, 还提出一个新的离群值计算方法, 为每一个样本计算相应的离群值得分, 从而高效地检测新增数据. 大量的实验结果表明, 所提出的方法明显优于现有的方法. 这是第1项将基于生成对抗网络的深度模型应用于多视图离群点检测的工作.
    优先出版日期:  2023-12-27 , DOI: 10.13328/j.cnki.jos.007032
    [摘要] (152) [HTML] (0) [PDF 6.33 M] (284)
    摘要:
    联邦学习因能解决数据孤岛问题而被广泛关注, 但也存在用户隐私泄露风险和非独立同分布数据下模型异构导致性能下降的问题. 针对该问题, 提出基于Bregman散度和差分隐私的个性化联邦学习方法(FedBDP). 所提方法采用Bregman散度衡量本地参数与全局参数的差异, 并将其作为正则化项更新损失函数, 以减小模型差异来提升模型准确率. 同时, 采用自适应差分隐私技术对本地模型参数进行扰动, 通过定义衰减系数动态调整每轮差分隐私噪声的大小, 以合理分配隐私噪声大小并提升模型可用性. 理论分析表明FedBDP在强凸和非凸光滑函数下满足收敛条件. 实验结果验证该方法在满足差分隐私的前提下, FedBDP模型在MNIST和CIFAR10数据集下能够保证模型准确率.
    优先出版日期:  2023-12-27 , DOI: 10.13328/j.cnki.jos.007038
    [摘要] (164) [HTML] (0) [PDF 7.69 M] (325)
    摘要:
    渗透测试是发现重要网络信息系统弱点并进而保护网络安全的重要手段, 传统的渗透测试深度依赖人工, 并且对测试人员的技术要求很高, 从而限制了普及的深度和广度. 自动化渗透测试通过将人工智能技术引入渗透测试全过程, 在极大解决对人工的重度依赖基础上, 降低了渗透测试技术门槛. 自动化渗透测试主要可分为基于模型和基于规则的自动渗透测试. 二者的研究各有侧重, 前者是指利用模型算法模拟黑客攻击, 研究重点是攻击场景感知和攻击决策模型; 后者则聚焦于攻击规则和攻击场景如何高效适配等方面. 主要从攻击场景建模、渗透测试建模和决策推理模型等3个环节深入分析相关自动化渗透测试实现原理, 最后从攻防对抗、漏洞组合利用等维度探讨自动化渗透的未来发展方向.
    优先出版日期:  2023-12-27 , DOI: 10.13328/j.cnki.jos.007036
    摘要:
    间歇实时任务的分区DM (deadline-monotonic)调度是一个经典的研究问题, 针对约束截止期间歇任务, 提出一种具有更高处理器利用率的多核分区调度算法PDM-FFD (partitioned deadline-monotonic first-fit decrease). 在PDM-FFD中, 首先将任务按照其相对截止期以非递减顺序进行排序, 然后采用first-fit策略选择处理器核分配任务, 且在各处理器核上采用DM调度策略进行任务调度. 最后通过对任务干扰时间的分析, 得出一种更为紧凑的可调度性判定方法, 并通过该可调度性方法来判定任务的可调度性. 证明PDM-FFD的加速因子为$3 - (3\Delta + 1)/(m + \Delta )$, 时间复杂度为${\rm{O}}({n^2}) + {\rm{O}}(nm)$, 其中$\Delta =\displaystyle{\sum }_{{\tau }_{j}\in \tau }{C}_{j} \times {u}_{j}/{D}_{{\rm{max}}}$, ${\tau _j}$为任务集$\tau $中的任务, ${C_j}$为该任务最差执行时间, ${u_j}$为该任务利用率, ${D_{{\rm{max}}}}$为$\tau $中的最大相对截止期, n为$\tau $的任务数, m为处理器核数. 该加速因子严格小于$3 - 1/m$, 优于已有多核分区调度算法FBB-FFD. 实验表明, PDM-FFD算法在4核处理器上的处理器利用率比其他算法提高了18.5%, 且PDM-FFD的性能优势随着处理器核数、任务集利用率和任务数的增加而进一步扩大. 由于PDM-FFD算法具有高性能特性, 因此该算法可以广泛应用于资源受限的航天器、自动驾驶汽车、工业机器人等典型实时系统中.
    优先出版日期:  2023-12-20 , DOI: 10.13328/j.cnki.jos.007047
    摘要:
    随着开源人工智能系统规模的扩大, 软件的开发与维护也变得困难. GitHub是开源社区最重要的开源项目托管平台之一, 通过GitHub提供的拉取请求系统, 开发者可以方便地参与到开源项目的开发. 拉取请求的描述可以帮助项目核心团队理解拉取请求的内容和开发者的意图, 促进拉取请求被接受. 当前, 存在可观比例的开发者没有为拉取请求提供描述, 既增加了核心团队的工作负担, 也不利于项目日后的维护工作. 提出一种自动为拉取请求生成描述的方法PRSim. 所提方法提取拉取请求包含的提交说明、注释更新和代码改动等特征, 建立语法改动树, 使用树结构自编码器编码以检索代码改动相似的其他拉取请求, 参照相似拉取请求的描述, 使用编码器-解码器网络概括提交说明和注释更新, 生成新拉取请求的描述. 实验结果表明, PRSim的生成效果在Rouge-1、Rouge-2和Rouge-L这3个指标的F1分数上分别达到36.47%、27.69%和35.37%, 与现有方法LeadCM相比分别提升了34.3%、75.2%和55.3%, 与方法Attn+PG+RL相比分别提升了16.2%、22.9%和16.8%, 与方法PRHAN相比分别提升了23.5%、72.0%和24.8%.
    优先出版日期:  2023-12-20 , DOI: 10.13328/j.cnki.jos.007061
    [摘要] (176) [HTML] (0) [PDF 7.82 M] (227)
    摘要:
    随着智能信息时代的发展, 深度神经网络在人类社会众多领域中的应用, 尤其是在自动驾驶、军事国防等安全攸关系统中的部署, 引起了学术界和工业界对神经网络模型可能表现出的错误行为的担忧. 虽然神经网络验证和神经网络测试可以提供关于错误行为的定性或者定量结论, 但这种事后分析并不能防止错误行为的发生, 如何修复表现出错误行为的预训练神经网络模型依然是极具挑战性的问题. 为此, 深度神经网络修复这一领域应运而生, 旨在消除有缺陷的神经网络产生的错误预测, 使得神经网络满足特定的规约性质. 目前为止, 典型的神经网络修复范式有3种, 重训练、无错误定位的微调和包含错误定位的微调. 介绍深度神经网络的发展和神经网络修复的必要性; 厘清相近概念; 明确神经网络修复的挑战; 详尽地调研目前已有的神经网络修复策略, 并对内在联系与区别进行分析和比较; 调研整理神经网络修复策略常用的评价指标和基准测试; 展望未来神经网络修复领域研究中需要重点关注的可行方向.
    优先出版日期:  2023-12-06 , DOI: 10.13328/j.cnki.jos.007033
    [摘要] (101) [HTML] (0) [PDF 6.31 M] (264)
    摘要:
    自然场景中的实体标志, 如商标、交通标志等, 易受拍摄角度、所依附物体形变、尺度变化等影响, 导致检测精度降低. 为此, 提出一种注意力引导的标志检测与识别网络(attention guided logo detection and recognition network, AGLDN), 联合优化模型对多尺度变化和复杂形变的鲁棒性. 首先通过标志模板图像搜集及掩码生成、标志背景图像选取和标志图像生成创建标志合成数据集; 然后基于RetinaNet和FPN提取多尺度特征并形成高级语义特征映射; 最后利用注意力机制引导网络关注标志区域, 克服目标变形对特征鲁棒性的影响, 实现标志检测与识别. 实验结果表明, 所提方法可以有效降低尺度变化、非刚性形变的影响, 提高标志检测准确率.
    优先出版日期:  2023-12-06 , DOI: 10.13328/j.cnki.jos.007034
    [摘要] (311) [HTML] (0) [PDF 10.18 M] (279)
    摘要:
    基于机器定理证明的形式化验证技术不受状态空间限制, 是保证软件正确性、避免因潜在软件缺陷带来严重损失的重要方法. LLRB (left-leaning red-black trees)是一种二叉搜索树变体, 其结构比传统的红黑树添加了额外的左倾约束条件, 在验证时无法使用常规的证明策略, 需要更多的人工干预和努力, 其正确性验证是一个公认的难题. 为此, 基于二叉搜索树类算法Isabelle验证框架, 对其附加性质部分进行细化, 并给出具体化的验证方案. 在Isabelle中对LLRB插入和删除操作进行函数式建模, 对其不变量进行模块化处理, 并验证函数的正确性. 这是首次在Isabelle中对函数式LLRB插入和删除算法进行机械化验证, 相较于目前LLRB算法的Dafny验证, 定理数由158减少到84, 且无需构造中间断言, 减轻了验证的负担; 同时, 为复杂树结构算法的函数式建模及验证提供了一定的参考价值.
    优先出版日期:  2023-12-06 , DOI: 10.13328/j.cnki.jos.007035
    摘要:
    检测社交媒体文本中的潜在主题是一项有意义的任务. 由于帖子具有表达简短、非正规的特点, 其将带来严重的数据稀疏问题. 不仅如此, 基于变分自编码器(variational auto-encoders, VAE)的模型在主题推断过程中还忽视了用户间的社交关系, 考虑VAE假设输入的数据点间是相互独立的. 这导致了推断的潜在主题变量间缺少了相关性信息, 进而导致主题不够连贯. 社交网络结构信息不仅聚合上下文信息的线索, 还暗示了用户间的主题相关性. 因此, 提出基于消息传递和图先验分布的微博主题模型, 其借助图卷积网络(graph convolution network, GCN)编码更加丰富的上下文信息, 并且在变分自编码器推断主题的过程中, 通过图先验分布整合用户交互关系以促进对多数据点复杂关系的理解, 从而更好地挖掘社交媒体主题信息. 在3个真实微博数据集上的实验证明了所提方法的有效性.
    优先出版日期:  2023-11-29 , DOI: 10.13328/j.cnki.jos.007003
    [摘要] (110) [HTML] (0) [PDF 12.52 M] (294)
    摘要:
    在网络安全领域, 由域名生成算法(domain generation algorithm, DGA)产生的虚假域名被称为DGA域名. 与正常域名类似的是, DGA域名通常是字母或数字的随机组合, 这使得DGA域名具有较强的伪装性. 网络黑客利用DGA域名的伪装性实施网络攻击, 以达到绕过安全检测的目的. 如何有效地对DGA域名进行检测, 进而维护信息系统安全, 成为当前的研究热点. 传统的统计机器学习检测方法需要人工构建域名字符特征集合. 然而, 人工或者半自动化方式构建的域名特征存在质量参差不齐的情况, 进而影响检测的准确性. 鉴于深度神经网络强大的特征自动化抽取和表示能力, 提出一种基于多视角对比学习的DGA域名检测方法(MCL4DGA). 与现有方法不同的是, 所提方法结合了注意力神经网络、卷积神经网络和循环神经网络, 能够有效地捕获域名字符序列中的全局、局部和双向多视角特征依赖关系. 除此之外, 通过多视角表示向量之间的对比学习而产生的自监督信号, 能够增强模型的学习能力, 进而提高检测的准确性. 通过在真实数据集上与当前DGA域名检测方法实验对比验证了所提方法的有效性.
    优先出版日期:  2023-11-29 , DOI: 10.13328/j.cnki.jos.007005
    [摘要] (112) [HTML] (0) [PDF 7.43 M] (267)
    摘要:
    深度神经网络目前已被广泛应用于自动驾驶、医疗诊断、语音识别、人脸识别等安全攸关领域, 因此深度神经网络测试对于保证其质量非常关键. 然而, 为判断DNN模型预测是否正确而对测试用例进行标注的成本很高. 因此, 筛选出能够揭示DNN模型错误行为的测试用例并优先对其进行标注, 能够尽快修复模型缺陷, 从而提升DNN测试的效率、保证DNN模型质量. 提出一种基于数据变异的测试用例选择方法DMS. 该方法设计并实现数据变异算子生成变异模型, 以模拟模型缺陷并捕获测试用例揭错时的动态模式, 从而评估测试用例的揭错能力. 在25个深度学习测试集和模型的组合上进行实验, 结果表明, 无论是筛选出的样本中揭错用例的比例还是揭错方向的多样性, DMS都要显著优于现有的测试用例选择方法. 具体来说, 以原始测试集作为候选集时, 在选择10%的测试用例时, DMS能够筛选出候选集中53.85%–99.22%的揭错用例, 在选择5%的测试用例时, DMS筛选出的测试用例已经几乎能覆盖所有的揭错方向. 相较于8种对比方法, DMS平均多找出12.38%–71.81%的揭错用例, 证明了DMS在测试用例选择任务中的显著有效性.
    优先出版日期:  2023-11-29 , DOI: 10.13328/j.cnki.jos.007007
    [摘要] (172) [HTML] (0) [PDF 7.72 M] (458)
    摘要:
    在当前数据来源多样化且人工标记难度大的现实生活中, 半监督场景下多视角数据的分类算法在各个领域中都具有重要的研究意义. 近年来, 基于图神经网络的半监督多视角分类算法研究已经取得了很大的进展. 但是现有的图神经网络算法大多是在分类阶段进行多视角互补信息的融合, 反而忽略了训练阶段同一样本不同视角间互补信息的交互. 针对上述问题, 提出半监督场景下多视角信息交互的图卷积神经网络算法MIGCN (multi-view interaction graph convolutional network). 该方法通过在不同视角上训练的图卷积层之间引入Transformer Encoder模块, 使得同一样本在训练阶段都可以通过注意力机制自适应的在不同视角间获取互补性信息, 进而加强自身的训练; 除此之外, 还通过引入一致性约束损失让不同视角最终特征表达的相似关系尽可能一样, 促使图卷积神经网络在分类阶段更加合理的利用多视角特征之间的一致性和互补性信息, 进一步提升多视角融合特征的鲁棒性. 最后, 在多个真实世界多视角数据集上的实验表明, 相比于基于图的半监督多视角分类模型, MIGCN可以更好地学习到多视角数据的本质特征, 进而提升半监督多视角分类的准确性.
    优先出版日期:  2023-11-22 , DOI: 10.13328/j.cnki.jos.006968
    [摘要] (226) [HTML] (0) [PDF 3.84 M] (272)
    摘要:
    Apache Flink是目前最流行的流式计算平台之一, 已经在工业界得到了广泛应用. 复杂事件处理是流式计算的一种重要使用场景, Apache Flink平台定义并实现了一种复杂事件处理语言(简称FlinkCEP). FlinkCEP语法特性丰富, 不仅包括常见的过滤、连接、循环等操作, 还包括迭代条件、匹配筛选策略等高级特性. FlinkCEP语义复杂, 尚缺乏语言规范对其语义进行准确描述, 只能通过实现细节来理解, 因此对其语义进行形式描述对于开发人员准确理解其语义非常必要. 针对FlinkCEP提出一种数据流转换器的自动机模型, 该模型包括用于刻画迭代条件的数据变量、存储输出结果的数据流变量、用于刻画匹配筛选策略的迁移优先级等特性. 使用数据流转换器对FlinkCEP的语义进行形式建模, 并且根据形式语义设计FlinkCEP的查询求值算法, 实现原型系统. 进一步, 生成能够较为全面覆盖FlinkCEP语法特性的测试用例集, 利用这些测试用例与FlinkCEP在Flink平台上的实际运行结果进行对比实验. 实验结果表明所提出的形式语义与FlinkCEP在Flink平台上的实际语义基本是一致的. 而且, 对实验结果不一致的情况进行分析, 指出FlinkCEP在Flink平台上的实现对于组模式的处理可能存在错误.
    优先出版日期:  2023-11-15 , DOI: 10.13328/j.cnki.jos.007002
    [摘要] (130) [HTML] (0) [PDF 2.01 M] (347)
    摘要:
    时序知识图谱推理旨在补充知识图谱中缺失的链接(事实), 其中每个事实都与时间戳进行绑定. 基于变分自动编码器的动态变分框架在这项任务中显示出独特的优势. 通过将实体和关系基于高斯分布进行联合建模, 该方法不仅具备很强的可解释性, 而且解决了复杂的概率分布问题. 然而, 传统的变分自动编码器方法在训练过程中容易出现过拟合问题, 从而不能精确捕捉实体语义的演化过程. 为了解决这个问题, 提出基于扩散概率分布的时序知识图谱推理模型. 具体来讲, 建立一个双向的迭代过程, 将实体语义建模过程分为多个子模块. 其中, 每个子模块通过一个正向的加噪变换和反向的高斯采样组成, 负责建模实体语义的一个微小演变过程. 相对基于变分自动编码器的方法, 通过多个子模块联合建模显示地学习度量空间中实体语义随时间的动态表示, 能够得到更为精确的建模. 与基于变分自动编码器的方法相比, 对于评估指标 $ MRR $, 模型在Yago11k数据集和Wikidata12k数据集分别提高4.18%和1.87%, 在ICEWS14和ICEWS05-15数据集上分别提高1.63%和2.48%.
    优先出版日期:  2023-11-15 , DOI: 10.13328/j.cnki.jos.006993
    摘要:
    基于文本描述的行人检索是一个新兴的跨模态检索子任务, 由传统行人重识别任务衍生而来, 对公共安全以及人员追踪具有重要意义. 相比于单模态图像检索的行人重识别任务, 基于文本描述的行人检索解决了实际应用中缺少查询图像的问题, 其主要挑战在于该任务结合了视觉内容和文本描述两种不同模态的数据, 要求模型同时具有图像理解能力和文本语义学习能力. 为了缩小行人图像和文本描述的模态间语义鸿沟, 传统的基于文本描述的行人检索方法多是对提取的图像和文本特征进行机械地分割, 只关注于跨模态信息的语义对齐, 忽略了图像和文本模态内部的潜在联系, 导致模态间细粒度匹配的不准确. 为了解决上述问题, 提出模态间关系促进的行人检索方法, 首先利用注意力机制分别构建模态内自注意力矩阵和跨模态注意力矩阵, 并将注意力矩阵看作不同特征序列间的响应值分布. 然后, 分别使用两种不同的矩阵构建方法重构模态内自注意力矩阵和跨模态注意力矩阵. 其中自注意力矩阵的重构利用模态内逐元素重构的方式可以很好地挖掘模态内部的潜在联系, 而跨模态注意力矩阵的重构用模态间整体重构矩阵的方法, 以跨模态信息为桥梁, 可充分挖掘模态间的潜在信息, 缩小语义鸿沟. 最后, 用基于任务的跨模态投影匹配损失和KL散度损失联合约束模型优化, 达到模态间信息相互促进的效果. 在基于文本描述的行人检索公开数据库CUHK-PEDES上进行了定量以及检索结果的可视化, 均表明所提方法可取得目前最优的效果.
    优先出版日期:  2023-11-15 , DOI: 10.13328/j.cnki.jos.006997
    [摘要] (102) [HTML] (0) [PDF 6.86 M] (300)
    摘要:
    安全关键嵌入式软件的运行时行为通常具有严格时间约束, 对安全属性的执行提出额外要求. 针对嵌入式软件的信息流安全保护要求, 以及现有安全性验证方法面向单一属性且存在假阳性等问题, 首先从现实场景的安全需求出发, 提出一种新的时间无干扰属性timed SIR-NNI; 然后提出一种兼容多种时间无干扰属性(timed BNNI, timed BSNNI及timed SIR-NNI)统一验证的信息流安全验证方法, 该验证方法依据不同的时间无干扰性要求, 从待验证时间自动机自动构造测试自动机和精化自动机, 通过UPPAAL的可达性分析实现精化关系检查和安全性验证. 实现的验证工具TINIVER从SysML顺序图模型或C++源码提取时间自动机实施验证流程. 使用TINIVER对现有时间自动机模型和安全属性的验证说明方法的可用性, 对无人机飞行控制系统ArduPilot和PX4的典型飞行模式切换模型的安全验证说明方法的实用性和可扩展性. 此外, 方法能避免现有典型验证方法的假阳性缺陷.
    优先出版日期:  2023-11-15 , DOI: 10.13328/j.cnki.jos.006995
    [摘要] (129) [HTML] (0) [PDF 6.16 M] (312)
    摘要:
    多视图聚类在图像处理、数据挖掘和机器学习等领域引起了越来越多的关注. 现有的多视图聚类算法存在两个不足, 一是在图构造过程中只考虑每个视图数据之间的成对关系生成亲和矩阵, 而缺乏邻域关系的刻画; 二是现有的方法将多视图信息融合和聚类的过程相分离, 从而降低了算法的聚类性能. 为此, 提出一种更为准确和鲁棒的基于二部图的联合谱嵌入多视图聚类算法. 首先, 基于多视图子空间聚类的思想构造二部图进而产生相似图, 接着利用相似图的谱嵌入矩阵进行图融合, 其次, 在融合过程中考虑每个视图的重要性进行权重约束, 进而引入聚类指示矩阵得到最终的聚类结果. 提出的模型将二部图、嵌入矩阵与聚类指示矩阵约束在一个框架下进行优化. 此外, 提供一种求解该模型的快速优化策略, 该策略将优化问题分解成小规模子问题, 并通过迭代步骤高效解决. 提出算法和已有的多视图聚类算法在真实数据集上进行实验分析. 实验结果表明, 相比已有方法, 提出算法在处理多视图聚类问题上是更加有效和鲁棒的.
    优先出版日期:  2023-11-08 , DOI: 10.13328/j.cnki.jos.006994
    [摘要] (144) [HTML] (0) [PDF 4.62 M] (288)
    摘要:
    近年来, 随着移动设备的计算能力和感知能力的提高, 基于位置信息的时空众包应运而生, 任务分配效果的提升面临许多挑战, 其中之一便是如何给工人分配他们真正感兴趣的任务. 现有的研究方法只关注工人的时间偏好而忽略了空间因素对偏好的影响, 仅关注长期偏好却忽略了短期偏好, 同时面临历史数据稀疏导致的预测不准的问题. 研究基于长短期时空偏好的任务分配问题, 从长期和短期两个角度以及时间和空间两个维度全面考虑工人的偏好, 进行时空众包任务分配, 提高任务的成功分配率和完成效率. 为提升时空偏好预测的准确性, 提出分片填充的张量分解算法(SICTD)减小偏好张量的空缺值占比, 提出时空约束下的ST-HITS算法, 综合考虑工人短期活跃范围, 计算短期时空偏好. 为了在众包任务分配中最大化任务总收益和工人偏好, 设计基于时空偏好的贪心与Kuhn-Munkres (KM)算法, 优化任务分配的结果. 在真实数据集上的大量实验结果表明, 提出的分片填补张量分解算法对时间和空间偏好的RMSE预测误差较基线算法分别下降22.55%和24.17%; 在任务分配方面, 提出的基于偏好的KM算法表现出色, 对比基线算法, 在工人总收益和工人完成任务平均偏好值上分别提升40.86%和22.40%.
    优先出版日期:  2023-11-08 , DOI: 10.13328/j.cnki.jos.006988
    摘要:
    针对IPv6快速普及背景下分布式拒绝服务(DDoS)攻击威胁不断增长的现状, 提出一种两阶段的DDoS攻击防御机制, 包括初期实时监控DDoS攻击发生的预检测阶段, 以及告警后精准过滤DDoS攻击流量的深度检测阶段. 首先, 分析IPv6报文格式并解析PCAP流量捕获文件中的16进制头部字段作为样本元素. 其次, 在预检测阶段, 引入轻量化二值卷积神经网络(BCNN), 设计一种二维流量矩阵作为模型输入, 整体感知网络在混杂DDoS流量后出现的恶意态势作为告警DDoS发生的证据. 告警后, 深度检测阶段介入, 引入一维卷积神经网络(1DCNN)具体区分混杂的DDoS报文, 从而下发阻断策略. 在实验中, 自建IPv6-LAN拓扑并基于NAT 4to6技术重放CIC-DDoS2019公开集生成纯IPv6-DDoS流量源测试. 结果证明, 所提机制提升针对DDoS攻击的响应速度、准确度和攻击流量过滤效率, 当DDoS流量出现仅占总网络6%和10%时, BCNN就能以90.9%和96.4%的准确度感知到DDoS攻击的发生, 同时1DCNN能够以99.4%准确区分DDoS报文并过滤.
    优先出版日期:  2023-11-08 , DOI: 10.13328/j.cnki.jos.006989
    [摘要] (150) [HTML] (0) [PDF 1.60 M] (351)
    摘要:
    智能合约是一种被大量部署在区块链上的去中心化的应用. 由于其具有经济属性, 智能合约漏洞会造成潜在的巨大经济和财产损失, 并破坏以太坊的稳定生态. 因此, 智能合约的漏洞检测具有十分重要的意义. 当前主流的智能合约漏洞检测方法(诸如Oyente和Securify)采用基于人工设计的启发式算法, 在不同应用场景下的复用性较弱且耗时高, 准确率也不高. 为了提升漏洞检测效果, 针对智能合约的时间戳漏洞, 提出基于数据流传播路径学习的智能合约漏洞检测方法Scruple. 所提方法首先获取时间戳漏洞的潜在的数据传播路径, 然后对其进行裁剪并利用融入图结构的预训练模型对传播路径进行学习, 最后对智能合约是否具有时间戳漏洞进行检测. 相比而言, Scruple具有更强的漏洞捕捉能力和泛化能力, 传播路径学习的针对性强, 避免了对程序整体依赖图学习时造成的层次太深而无法聚焦漏洞的问题. 为了验证Scruple的有效性, 在真实智能合约的数据集上, 开展Scruple方法与13种主流智能合约漏洞检测方法的对比实验. 实验结果表明, Scruple在检测时间戳漏洞上的准确率, 召回率和F1值分别可以达到0.96, 0.90和0.93, 与13种当前主流方法相比, 平均相对提升59%, 46%和57%, 从而大幅提升时间戳漏洞的检测能力.
    优先出版日期:  2023-11-08 , DOI: 10.13328/j.cnki.jos.007001
    [摘要] (130) [HTML] (0) [PDF 5.96 M] (304)
    摘要:
    数据作为一种新型生产要素, 需要在不同主体间流通以发挥价值. 在这一过程中, 数据需要确保其完整性, 避免受到未经授权的篡改, 否则可能导致极为严重的后果. 现有工作通过将分布式账本与数据加密、校验技术结合实现数据存证以证明待流通数据在传输、存储等环节中未受篡改, 保障数据的完整性. 然而, 此类工作难以确认数据供方所提供数据本身的完整性, 一旦数据供方主动或被动提供了伪造数据, 后续完整性保障工作将失去意义. 为此, 提出一种基于远程证明的数据服务完整性验证方法, 所提方法以可信执行环境作为信任锚, 对特定数据服务静态代码、执行过程和执行结果的完整性进行多维度量与验证, 并通过程序切片优化对特定数据服务的完整性验证, 从而将数据完整性保障的范围延伸至数据供方提供数据的环节. 通过在3个真实Java信息系统中25个数据服务上的一系列实验验证了所提出方法的有效性.
    优先出版日期:  2023-11-01 , DOI: 10.13328/j.cnki.jos.006986
    摘要:
    分布式存储系统在移动网络场景中正受到越来越多的关注, 作为其关键技术, 数据布局对于提高数据分布式存储的成功率至关重要. 然而, 移动环境下无线信号不稳定, 网络带宽波动大, 传统的数据布局策略, 如随机策略和存储容量感知策略, 在数据布局时并未考虑节点的网络带宽, 导致数据传输成功率低. 面向高动态移动网络环境, 针对移动分布式存储系统面临的数据布局问题, 提出一种带宽感知的自适应数据布局策略. 其基本思想是将网络带宽和节点上的其他信息结合, 从而选择性能良好的节点, 实现自适应数据布局, 提高数据传输成功率. 所提策略包含3个设计要点: (1)采用群组移动模型感知节点的网络带宽; (2)分组管理节点信息, 减少通信开销, 并利用小根堆的特性构建节点选择树; (3)自适应数据布局根据节点可用性动态选择性能良好的节点, 提高数据传输成功率. 实验结果表明: 当网络动态变化时, 所提策略的数据传输成功率相较于随机策略和存储容量感知策略分别提升30.6%, 34.6%, 并始终将通信开销维持在较低的水平.
    优先出版日期:  2023-11-01 , DOI: 10.13328/j.cnki.jos.006987
    [摘要] (248) [HTML] (0) [PDF 2.25 M] (378)
    摘要:
    因特网用户在访问网络应用前都需要通过DNS进行解析, DNS安全是保障网络正常运行的第1道门户, 如果DNS的安全不能得到有效保证, 即使网络其他系统安全防护措施级别再高, 攻击者也可以通过攻击DNS系统使网络无法正常使用. 目前DNS恶性事件仍有上升趋势, DNS攻击检测和防御技术的发展仍不能满足现实需求. 从直接服务用户DNS请求的递归解析服务器视角出发, 将DNS安全事件通过两种分类方法, 全面梳理和总结DNS工作过程中面临的安全问题, 包括由攻击或系统漏洞等引起各类安全事件, 各类安全事件的具体检测方法, 各类防御保护技术. 在对各类安全事件、检测和防御保护技术总结的过程中, 对相应典型方法的特点进行分析和对比, 并对未来DNS安全领域的研究方向进行展望.
    优先出版日期:  2023-10-25 , DOI: 10.13328/j.cnki.jos.006992
    [摘要] (382) [HTML] (0) [PDF 1.48 M] (351)
    摘要:
    GitHub是著名的开源软件开发社区, 支持开发人员在开源项目中使用问题追踪系统来处理问题. 在软件缺陷问题的讨论过程中, 开发人员可能指出与该缺陷问题相关的其他项目问题(我们称为跨项目相关问题), 为缺陷问题的修复提供参考信息. 然而, GitHub平台中托管了超过2亿的开源项目和12亿个问题, 导致人工识别和获取跨项目相关问题的工作极其耗时. 提出为缺陷问题自动化推荐跨项目相关问题的方法CPIRecom. 为了构建预选集, 采用项目之间历史相关问题对的数量和问题发布时间间隔筛选问题. 其次, 为了精准推荐, 采用BERT预训练模型提取文本特征, 分析项目特征. 然后使用随机森林算法计算预选问题与缺陷问题的相关概率, 最终根据相关概率排名得到推荐列表. 模拟CPIRecom方法在GitHub平台的使用情况. CPIRecom方法的平均倒数排名达到0.603, 前5项查全率达到0.715.
    优先出版日期:  2023-10-25 , DOI: 10.13328/j.cnki.jos.007000
    [摘要] (251) [HTML] (0) [PDF 5.46 M] (363)
    摘要:
    模糊C均值(FCM)聚类算法凭借其学习成本低、算法开销少的特点, 已经成为常用的图像分割技术之一. 然而, 传统FCM算法存在对图像中噪声敏感的问题. 近年来, 各种对传统FCM算法的改进虽然提高了算法的噪声鲁棒性, 但是往往以损失图像上的细节为代价. 提出一种基于李群理论的改进FCM算法并将其应用于图像分割中. 所提算法针对图像的所有像素构建矩阵李群特征, 用以归纳每个像素的底层图像特征以及与其邻域窗口内其他像素的关系, 从而将传统FCM算法聚类分析中求取像素点之间的欧氏距离转变为在李群流形上求取像素点李群特征之间的测地线距离. 针对在李群流形上更新聚类中心和模糊隶属度矩阵的问题, 所提算法使用一种自适应模糊加权的目标函数, 提高算法的泛化性和稳定性. 通过在3组医学图像上与传统FCM算法以及几种经典改进算法的实验对比验证了所提方法的有效性.
    优先出版日期:  2023-10-25 , DOI: 10.13328/j.cnki.jos.006966
    [摘要] (135) [HTML] (0) [PDF 6.43 M] (331)
    摘要:
    当前基于用户名和口令的认证协议已难以满足日益增长的安全需求. 具体而言, 用户选择不同口令访问不同在线服务, 极大地增加了用户记忆负担; 此外, 口令认证安全性低, 面临许多已知攻击. 为了解决此类问题, 基于PS (Pointcheval-Sanders)签名提出一个以用户为中心的双因子认证密钥协商协议UC-2FAKA. 首先, 为防止认证因子泄露, 基于PS签名构造口令和生物特征双因子凭证, 并以零知识证明的方式向服务提供商(service provider, SP)验证身份; 其次, 采用以用户为中心的单点登录(single sign on, SSO)架构, 用户可以通过向身份提供商(identity provider, IDP)注册请求身份凭证来向不同的SP登录, 避免IDP和SP跟踪或链接用户; 再次, 采用Diffie-Hellman密钥交换认证SP身份并协商通信密钥, 保证后续的通信安全; 最后, 对所提出协议进行全面的安全性分析和性能对比, 结果表明所提出协议能够抵御各种已知攻击, 且所提出协议在通信开销和计算开销上表现更优.
    优先出版日期:  2023-10-25 , DOI: 10.13328/j.cnki.jos.006970
    [摘要] (165) [HTML] (0) [PDF 6.40 M] (291)
    摘要:
    现有的超图网络表示方法需要分析全批量节点和超边以实现跨层递归扩展邻域, 这会带来巨大的计算开销, 且因过度扩展导致更低的泛化精度. 为解决这一问题, 提出一种基于重要性采样的超图表示方法. 首先, 它将节点和超边看作是两组符合特定概率测度的独立同分布样本, 用积分形式解释超图的结构特征交互; 其次, 设计带可学习参数的邻域重要性采样规则, 根据节点和超边的物理关系和特征计算采样概率, 逐层递归采集固定数目的对象, 构造一个更小的采样邻接矩阵; 最终, 利用蒙特卡洛方法近似估计整个超图的空间特征. 此外, 借鉴PINN的优势, 将需要缩减的方差作为物理约束加入到超图神经网络中, 以获取更具泛化能力的采样规则. 多个数据集上的广泛实验表明, 所提出的方法能够获得更准确的超图表示结果, 同时具有更快的收敛速度.
    优先出版日期:  2023-10-18 , DOI: 10.13328/j.cnki.jos.006971
    [摘要] (150) [HTML] (0) [PDF 5.42 M] (293)
    摘要:
    快速的漏洞成因分析是漏洞修复中的关键一环, 也一直是学术界和工业界关注的热点. 现有基于大量测试样本执行记录进行统计特征分析的漏洞成因分析方法, 存在随机性噪声、重要逻辑关联指令缺失等问题, 其中根据测试集测量, 现有统计方法中的随机性噪声占比达到了61%以上. 针对上述问题, 提出一种基于局部路径图的漏洞成因分析方法, 其从执行路径中, 提取函数间调用图和函数内控制流转移图等漏洞关联信息. 并以此为基础筛除漏洞成因无关指令(即噪声指令), 构建成因点逻辑关系并补充缺失的重要指令, 实现一个面向二进制软件的自动化漏洞成因分析系统LGBRoot. 系统在20个公开的CVE内存破坏漏洞数据集上进行验证. 单个样本成因分析平均耗时12.4 s, 实验数据表明, 系统可以自动剔除56.2%噪声指令和补充并联结20个可视化漏洞成因相关点指令间的逻辑结构, 加快分析人员的漏洞分析速度.
    优先出版日期:  2023-10-18 , DOI: 10.13328/j.cnki.jos.006991
    [摘要] (120) [HTML] (0) [PDF 5.66 M] (297)
    摘要:
    合规性检查是过程挖掘领域的重要场景之一, 其目标是判断实际运行的业务行为与理想的业务行为是否一致, 进而为业务过程管理提供决策依据. 传统的合规性检查方法存在度量指标过多、效率低等问题. 此外, 现有研究在检查过程文本与过程模型之间的合规性时严重依赖专家知识. 为此, 提出面向过程文本的合规性检查方法. 首先, 基于过程模型的执行语义生成图轨迹, 并利用词向量模型提取图轨迹中的结构特征. 同时, 引入霍夫曼树提升词向量模型的效率. 接着, 对过程文本和模型中的活动特征进行提取, 并利用孪生机制提升训练效率. 最后, 对所有特征进行融合, 并利用全连接层预测过程文本与过程模型之间的一致性得分. 实验表明, 所提方法的平均绝对误差值要比已有方法低2个百分点.
    优先出版日期:  2023-10-18 , DOI: 10.13328/j.cnki.jos.006976
    [摘要] (142) [HTML] (0) [PDF 5.87 M] (315)
    摘要:
    二进制反汇编是困难的, 但是对于提高二进制软件的安全性至关重要. 造成二进制反汇编比较困难的一大原因是编译器为了提高效率会在二进制代码中引入很多间接跳转表. 为了求解间接跳转表, 主流反汇编工具采用了各种策略. 然而, 这些策略的具体实现以及策略的效果不得而知. 为了帮助研究人员理解反汇编工具的算法实现以及性能, 首先系统总结反汇编工具求解间接跳转表的策略; 然后构建自动化测试间接跳转表框架, 基于该框架, 可以大规模地生成关于间接跳转表的测试集(包含2410455个跳转表); 最后, 在该测试集上, 对反汇编工具求解间接跳转表的性能进行评估, 并人工分析反汇编工具的每个策略引入的错误. 另外, 得益于针对反汇编工具算法实现的系统性总结, 发现6个反汇编工具实现上的bugs.
    优先出版日期:  2023-10-18 , DOI: 10.13328/j.cnki.jos.006977
    [摘要] (132) [HTML] (0) [PDF 6.25 M] (276)
    摘要:
    数据库性能受数据库配置参数的影响, 参数设置的好坏会直接反映到数据库性能表现上, 因此, 数据库调参方法的优劣至关重要. 然而, 传统的数据库调参方法存在诸多局限性, 例如无法充分利用历史调参数据、浪费时间人力资源等. 而反事实解释方法是一种对原数据进行少量修改, 从而将原预测改变为期望预测的方法, 其起到的是建议的作用. 这种作用可以用于数据库配置优化, 即对数据库配置进行少量修改, 从而使得数据库的性能表现得到优化. 因此, 提出面向数据库配置优化的反事实解释方法, 对于在特定负载条件下性能表现不佳的数据库, 所提方法可以对数据库配置进行修改, 生成相应的数据库配置反事实, 从而优化数据库性能. 进行两种实验, 分别用于评估反事实解释方法的优劣以及验证其优化数据库的效果, 实验结果表明: 综合各个评估指标, 提出的反事实解释方法要优于其他的经典反事实解释方法, 并且生成的反事实能够确实有效地提高数据库性能.
    优先出版日期:  2023-10-11 , DOI: 10.13328/j.cnki.jos.006978
    [摘要] (202) [HTML] (0) [PDF 3.90 M] (473)
    摘要:
    近年来, 已有多种SM2数字签名算法的两方门限计算方案被提出, 这些方案能够有效地增强SM2数字签名算法的私钥安全性. 根据不同的密钥拆分方法, 已有公开方案可以分为两类, 分别基于乘法和加法拆分. 再根据不同的签名随机数构造方法, 衍生出多种两方门限计算方案. 提出SM2数字签名算法的两方门限计算方案框架, 所提框架给出安全的两方门限计算基本过程, 又可以引入不同构造的签名随机数. 利用提出的框架, 结合随机数的不同构造, 完成所提框架的多种实例化, 即得到SM2数字签名算法多种不同的两方门限计算方案. 所提框架的实例化, 包括现有已知的23种两方门限计算方案, 也包括多种新的方案.
    优先出版日期:  2023-10-11 , DOI: 10.13328/j.cnki.jos.006990
    [摘要] (178) [HTML] (0) [PDF 8.53 M] (316)
    摘要:
    以数据的深度挖掘与融合应用为主要特征的信息化3.0阶段正在开启, 传统静态环境下的软件正向人机物融合环境下开放动态的复杂软件演化. 如何在不可信不可控的互联网之上实现全网一体化可信可管可控的数据互联互通是当前亟待解决的难题, 以数字对象架构、标识解析技术为代表的数联网技术体系为上述挑战提供了一种可行思路. 针对互联网上数据资源共享交换过程中广泛存在的传输效率低、协调成本高、安全管控难等问题, 提出面向人机物融合的数联网标识解析技术规范, 并基于人机物融合环境中各实体之间数据资源可发现、可获取、可理解、可信任、可互操作等需求, 设计实现面向人机物融合的数联网数字对象标识解析协议以及数字对象标识系统. 最后, 对所实现的数字对象标识系统进行系统测试与评估, 并在实际应用场景中对其有效性进行验证.
    优先出版日期:  2023-10-11 , DOI: 10.13328/j.cnki.jos.006982
    [摘要] (124) [HTML] (0) [PDF 5.28 M] (325)
    摘要:
    尽管静态分析工具能够在软件开发生命周期的早期阶段帮助开发人员检测软件中的潜在缺陷, 但该类工具往往存在警报假阳性率高的问题. 为了提高该类工具的可用性, 研究人员提出许多警报确认技术来对假阳性警报进行自动分类. 然而, 已有方法集中于利用手工设计的特征或语句级的抽象语法树标记序列来表示缺陷代码, 难以从报告的警报中捕获语义. 为了克服传统方法的局限性, 利用深度神经网络强大的特征抽取和表示能力从控制流图路径中学习代码语义表征用于警报确认. 控制流图是程序的执行过程抽象表示, 因此控制流图路径序列能够引导模型更精确地学习与潜在缺陷相关的语义信息. 通过微调预训练语言模型对路径序列进行编码并从中捕捉语义特征用于模型构建. 最后在8个开源项目上与最先进的基线方法进行大量对比实验验证所提方法的有效性.
    优先出版日期:  2023-10-11 , DOI: 10.13328/j.cnki.jos.006965
    [摘要] (350) [HTML] (0) [PDF 2.65 M] (468)
    摘要:
    传统的操作系统设计所面临的主要挑战是需要管理的资源数量, 多样性, 分布范围不断增加以及系统状态频繁变化. 然而, 现有操作系统结构已经成为应对上述挑战的最大障碍, 原因如下: (1) 紧耦合和中心化的结构不仅损害了系统的灵活性和扩展性, 还导致了操作系统生态分离; (2) 系统中单一的隔离机制, 如内核态-用户态隔离, 造成了各种能力之间的矛盾, 如安全性和性能等. 为此, 结合简捷的分层软总线设计思想和多样化隔离机制来组织操作系统组件, 提出一种新型操作系统模型——Yggdrasil. Yggdrasil将操作系统功能分解为以软总线相连接的组件节点, 其通信被标准化为经软总线的消息传递. 为支持特权态等隔离状态的划分和不同的软件层次, Yggdrasil还引入桥节点实现多层软总线的级联和受控通信, 通过自相似的拓扑特性使操作系统的逻辑表述能力和扩展性都得到了极大的强化. 此外, 软总线的简单性和层次性也有助于实现去中心化. 构建操作系统的分层软总线模型实例HiBuOS, 通过3方面的具体设计验证并展示基于Yggdrasil思想来开发新型操作系统的可行性: (1) 根据目标操作系统的规模和要求设计规划多层总线结构; (2) 选择具体的隔离和通信机制实例化桥节点和软总线; (3) 实现基于分层软总线风格的操作系统服务. 对HiBuOS的评估表明, 它没有引入明显的性能损耗, 而且还在提高系统可扩展性, 安全性和生态发展方面具有显著的优势和潜力.
    优先出版日期:  2023-10-11 , DOI: 10.13328/j.cnki.jos.006974
    [摘要] (147) [HTML] (0) [PDF 4.97 M] (308)
    摘要:
    函数是大多数传统编程语言中聚合行为的最小命名单元, 函数名的可读性对于程序员理解程序功能及不同模块之间的交互有着至关重要的作用, 低质量的函数名会使开发人员感到困惑, 增加代码中的坏味道, 进而引发由API误用而导致的软件缺陷. 为此, 提出一种基于深度学习的函数名一致性检查及推荐方法, 该方法被命名为DMName. 首先, 对于给定的目标函数源码, 分别构建其内部上下文、交互上下文、兄弟上下文和封闭上下文, 合并后得到上下文信息标记序列, 然后利用FastText词嵌入技术将标记序列转换为上下文表示向量序列, 输入到seq2seq模型编码器中, 引入Copy机制和Coverage机制分别解决OOV问题和重复解码问题, 输出目标函数名预测结果的向量序列, 借助双通道CNN分类器进行函数名的一致性判断, 若不一致则根据向量空间相似度匹配直接映射获得推荐的函数名. 实验结果表明, DMName方法在函数名一致性检查任务和函数名推荐任务中的F1值分别达到82.65%和73.31%, 比目前最优的DeepName方法分别提高2.01%和2.96%. 最后, 在GitHub大规模开源项目lancia中对DMName方法进行验证, 挖掘得到16个函数名不一致问题并进行合理的名称推荐, 进一步证实DMName方法的有效性.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006967
    [摘要] (163) [HTML] (0) [PDF 9.41 M] (381)
    摘要:
    随着神经网络技术的快速发展, 其在自动驾驶、智能制造、医疗诊断等安全攸关领域得到了广泛应用, 神经网络的可信保障变得至关重要. 然而, 由于神经网络具有脆弱性, 轻微的扰动经常会导致错误的结果, 因此采用形式化验证的手段来保障神经网络安全可信是非常重要的. 目前神经网络的验证方法主要关注分析的精度, 而易忽略运行效率. 在验证一些复杂网络的安全性质时, 较大规模的状态空间可能会导致验证方法不可行或者无法求解等问题. 为了减少神经网络的状态空间, 提高验证效率, 提出一种基于过近似误差分治的神经网络形式化验证方法. 所提方法利用可达性分析技术计算非线性节点的上下界, 并采用一种改进的符号线性松弛方法减少了非线性节点边界计算过程中的过近似误差. 通过计算节点过近似误差的直接和间接影响, 将节点的约束进行细化, 从而将原始验证问题划分为一组子问题, 其混合整数规划(MILP)公式具有较少的约束数量. 所提方法已实现为工具NNVerifier, 并通过实验在经典的3个数据集上训练的4个基于ReLU的全连接基准网络进行性质验证和评估. 实验结果表明, NNVerifier的验证效率比现有的完备验证技术提高37.18%.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006957
    [摘要] (154) [HTML] (0) [PDF 5.23 M] (367)
    摘要:
    FBC分组密码算法是入选2018年全国密码算法设计大赛第2轮的10个分组密码算法之一. FBC主要采用四分支两路Feistel结构设计, 是一个实现效率高的轻量级分组密码算法. 将FBC算法抽象为FBC模型, 并研究该模型的伪随机性和超伪随机性, 在FBC轮函数都是相互独立的随机函数的条件下, 给出能够与随机置换不可区分所需的最少轮数. 结论表明, 在选择明文攻击条件下, 4 轮FBC与随机置换不可区分, 因而具有伪随机性; 在自适应性选择明密文攻击条件下, 5轮FBC与随机置换不可区分, 因而具有超伪随机性.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006958
    [摘要] (293) [HTML] (0) [PDF 6.51 M] (570)
    摘要:
    小样本学习旨在模拟人类基于少数样例快速学习新事物的能力, 对解决样本匮乏情境下的深度学习任务具有重要意义. 但是, 在诸多计算资源有限的现实任务中, 模型规模仍可能限制小样本学习的广泛应用. 这对面向小样本学习的轻量化任务提出了现实的需求. 知识蒸馏作为深度学习领域广泛使用的辅助策略, 通过额外的监督信息实现模型间知识迁移, 在提升模型精度和压缩模型规模方面都有实际应用. 首先验证知识蒸馏策略在小样本学习模型轻量化中的有效性. 并结合小样本学习任务的特点, 针对性地设计两种新的小样本蒸馏方法: (1)基于图像局部特征的蒸馏方法; (2)基于辅助分类器的蒸馏方法. 在miniImageNet和TieredImageNet数据集上的相关实验, 证明所设计的新的蒸馏方法相较于传统知识蒸馏在小样本学习任务上具有显著优越性. 源代码请见https://github.com/cjy97/FSLKD.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006972
    [摘要] (142) [HTML] (0) [PDF 7.00 M] (364)
    摘要:
    不一致数据子集修复问题是数据清洗领域的重要研究问题, 现有方法大多是基于完整性约束规则的, 采用最小删除元组数量原则进行子集修复. 然而, 这种方法没有考虑删除元组的质量, 导致修复准确性较低. 为此, 提出规则与概率相结合的子集修复方法, 建模不一致元组概率使得正确元组的平均概率大于错误元组的平均概率, 求解删除元组概率和最小的子集修复方案. 此外, 为了减小不一致元组概率计算的时间开销, 提出一种高效的错误检测方法, 减小不一致元组规模. 真实数据和合成数据上的实验结果验证所提方法的准确性优于现有最好方法.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006973
    [摘要] (320) [HTML] (0) [PDF 10.36 M] (569)
    摘要:
    近年来, 软件系统安全问题正引发越来越多的关注, 系统存在的安全威胁容易被攻击者所利用, 攻击者通常采用各种攻击技术诸如口令暴力破解、网络钓鱼、SQL注入等对系统进行攻击. 威胁建模是一种结构化分析、识别并处理威胁的方法, 传统的测试主要集中在测试代码缺陷, 处于软件开发后期, 不能很好地对接前期威胁建模分析成果以构建安全的软件, 业界威胁建模工具缺少进一步生成安全测试的功能. 为了应对此问题, 提出一种从威胁模型生成安全测试用例的框架, 并设计和实现工具原型. 为了便于测试, 对传统的攻击树模型进行改进, 对构建的模型进行规范性检查, 从该模型中可以自动生成测试线索. 根据攻击节点发生概率对测试线索进行评估, 优先检测概率较高的威胁的测试线索. 对防御节点进行评估, 选择收益性较高的防御方案缓解威胁, 以改进系统安全设计. 通过为攻击节点设置参数可以将测试线索转换成具体的测试用例. 在软件开发早期阶段以威胁建模识别出的威胁作为输入, 通过框架和工具可以生成测试, 指导后续的安全开发和安全测试设计, 将安全技术更好地嵌入到软件设计和开发之中. 案例研究部分将该框架和工具运用于极高危风险的安全测试生成, 并说明了其有效性.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006998
    [摘要] (261) [HTML] (0) [PDF 5.08 M] (488)
    摘要:
    多模态情感分析是利用多种模态的主观信息对情感进行分析的一种多模态任务, 探索模态间的有效交互是多模态分析中的一项重要研究. 在最近的研究中发现, 由于模态的学习速率不平衡, 导致单个模态收敛时, 其余模态仍处于欠拟合的状态, 进而削弱了多模态协同决策的效果. 为了能更有效地将多种模态结合, 学习到更具有表达力的情感特征表示, 提出一种基于自适应权值融合的多模态情感分析方法. 所提方法分为两个阶段: 第1个阶段是根据不同模态的学习梯度差异自适应地改变单模态特征表示的融合权值, 实现动态调整模态学习速率的目的, 把该阶段称为B融合(balanced fusion). 第2个阶段是为了消除B融合的融合权值对任务分析的影响, 提出模态注意力探究模态对任务的贡献, 并根据贡献为各模态分配权重, 我们把该阶段称为A融合 (attention fusion). 用于情感分析的多模态表示由B融合和A融合的结果共同组成. 实验结果显示, 将B融合方法引入现有的多模态情感分析方法中, 能够有效提升现有方法对情感分析任务的分析准确度; 消融实验结果显示, 在B融合的基础上增加A融合方法能有效减小B融合权重对任务的影响, 有利于提升情感分析任务的准确度. 与现有的多模态情感分析模型相比, 所提方法结构更简单、运算时间更少, 且任务准确率优于对比模型, 表明所提方法在多模态情感分析任务中的高效性和优异性能.
    优先出版日期:  2023-09-27 , DOI: 10.13328/j.cnki.jos.006999
    摘要:
    揭示情绪之间的关系是认知心理学的一项重要基础研究. 从自然语言处理的角度来说, 探讨情绪之间的关系的关键在于得到合适的情绪类别的嵌入式表示. 最近, 在情感空间中获得一个可以表征情绪关系的类别表示已经引起了一些关注. 然而, 现有的情绪类别嵌入方法存在以下几个缺点. 比如固定维度, 情绪类别表示的维度依赖于所选定的数据集. 为了取得一个更好的情绪类别表示, 引入监督对比学习的表示方法. 在之前的监督对比学习方法中, 样本之间的相似性取决于样本所标注的标签的相似性. 为了更好地反映出不同情绪类别之间的复杂关系, 进一步提出部分相似的监督对比学习表示方法, 认为不同情绪类别(比如情绪anger和annoyance)的样本之间也可能是部分相似的. 最后, 组织一系列实验来验证所提方法以及其他5个基准方法在表述情绪类别之间关系的能力. 实验结果表明, 所提方法取得了理想的情绪类别表示结果.
    优先出版日期:  2023-09-20 , DOI: 10.13328/j.cnki.jos.006955
    [摘要] (195) [HTML] (0) [PDF 12.16 M] (580)
    摘要:
    睡眠过程中的人体呼吸波形检测对于智慧康养和医疗保健应用至关重要, 结合不同的呼吸波形模式可以实现睡眠质量分析和呼吸系统疾病检测. 传统基于接触式设备的呼吸感知方法会给用户带来诸多不便, 与其相比, 非接触式感知方法更适合进行连续性监测. 然而, 在睡眠过程中由于设备部署、睡眠姿态以及人体运动都具有随机性, 严重限制了非接触呼吸感知方案在日常生活中的使用. 为此, 提出一种基于脉冲超宽带(impulse radio-ultra wide band, IR-UWB)的睡眠状态下人体呼吸波形检测方法. 所提方法以睡眠状态下人体呼吸时其胸腔起伏导致无线脉冲信号传播路径的周期性变化为基础, 进而生成细粒度的人体呼吸波形, 实现呼吸波形的实时输出以及呼吸速率的高精度估计. 首先, 为了从接收无线射频信号中获取人体呼吸时的胸腔位置, 提出一个基于IR-UWB信号的呼吸能量比指标来实现目标位置估计. 然后, 通过提出基于I/Q复平面的向量投影方法和基于呼吸向量圆周位置的投影信号选择方法, 从反射信号中提取到人体呼吸特征波形. 最后, 结合变分编码器-解码器网络来实现睡眠状态下细粒度的呼吸波形恢复. 通过在不同条件下进行大量实验测试, 结果表明所提方法在睡眠状态下监测的人体呼吸波形与商用呼吸带获得的真实波形高度相似, 其呼吸速率的平均估计误差为0.229 bpm, 可实现高精度的睡眠状态下人体呼吸波形检测.
    优先出版日期:  2023-09-20 , DOI: 10.13328/j.cnki.jos.006956
    [摘要] (232) [HTML] (0) [PDF 6.36 M] (443)
    摘要:
    对于安全可靠的机器学习系统, 具备检测训练集分布外 (out-of-distribution, OOD) 样本的能力十分必要. 基于似然的生成式模型由于训练时不需要样本标签, 是一类非常受欢迎的OOD检测方法. 然而, 近期研究表明通过似然来检测OOD样本往往会失效, 并且失效原因与解决方案的探究仍较少, 尤其是对于文本数据. 从模型层面和数据层面分析文本上失效的原因: 生成式模型的泛化性不足和文本先验概率的偏差. 在此基础上, 提出一种新的OOD文本检测方法Pobe. 针对生成式模型泛化性不足的问题, 引入KNN检索的方式, 来提升模型的泛化性. 针对文本先验概率偏差的问题, 设计一种偏差校准策略, 借助预训练语言模型改善概率偏差对OOD检测的影响, 并通过贝叶斯定理证明策略的合理性. 通过在广泛的数据集上进行实验, 证明所提方法的有效性, 其中, 在8个数据集上的平均AUROC值超过99%, FPR95值低于1%.
    优先出版日期:  2023-09-20 , DOI: 10.13328/j.cnki.jos.006838
    [摘要] (154) [HTML] (0) [PDF 6.95 M] (398)
    摘要:
    打卡可能出于私人目的, 没有组织关联, 比如记录个人的旅行日志; 也可能是公事需求, 属于组织考勤的一部分, 有时还会与多个组织关联. 因此, 打卡数据的保存、分享和分析需要精细化管理. HAO打卡是一个移动式轻量级打卡平台, 以个人和组织为两个抓手, 以人类智能(HI)、人工智能(AI)和组织智能(OI)相结合的HAO智能为技术驱动, 构建HAO打卡知识图谱, 通过提出HAO打卡闭环权限管理架构, 并辅以从粗粒度到细粒度的隐私权限管理办法, 在进行精细化考勤管理的同时保护用户的隐私, 从而推动新一代打卡系统的智能化变革. 在组织考勤分析方面, 提出四要素得分法和四要素考勤报表法, 通过打卡数据计算员工考勤得分, 生成精准全面的考勤报表, 为组织提供决策支持, 激发组织和个人的活力, 以组织智能成就智能组织.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006948
    [摘要] (147) [HTML] (0) [PDF 11.55 M] (514)
    摘要:
    遗忘是人工神经网络在增量学习中的最大问题, 被称为“灾难性遗忘”. 而人类可以持续地获取新知识, 并能保存大部分经常用到的旧知识. 人类的这种能持续“增量学习”而很少遗忘是与人脑具有分区学习结构和记忆回放能力相关的. 为模拟人脑的这种结构和能力, 提出一种“避免近期偏好的自学习掩码分区增量学习方法”简称ASPIL. 它包含“区域隔离”和“区域集成”两阶段, 二者交替迭代实现持续的增量学习. 首先, 提出“BN稀疏区域隔离” 方法, 将新的学习过程与现有知识隔离, 避免干扰现有知识; 对于“区域集成”, 提出自学习掩码(SLM)和双分支融合(GBF)方法. 其中SLM准确提取新知识, 并提高网络对新知识的适应性, 而GBF将新旧知识融合, 以达到建立统一的、高精度的认知的目的; 训练时, 为确保进一步兼顾旧知识, 避免对新知识的偏好, 提出间隔损失正则项来避免“近期偏好”问题. 为评估以上所提出方法的效用, 在增量学习标准数据集CIFAR-100和miniImageNet上系统地进行消融实验, 并与最新的一系列知名方法进行比较. 实验结果表明, 所提方法提高了人工神经网络的记忆能力, 与最新知名方法相比识别率平均提升5.27%以上.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006949
    [摘要] (217) [HTML] (0) [PDF 7.87 M] (647)
    摘要:
    深度神经网络训练时可能会受到精心设计的后门攻击的影响. 后门攻击是一种通过在训练集中注入带有后门标志的数据, 从而实现在测试时控制模型输出的攻击方法. 被进攻的模型在干净的测试集上表现正常, 但在识别到后门标志后, 就会被误判为目标进攻类. 当下的后门攻击方式在视觉上的隐蔽性并不够强, 并且在进攻成功率上还有提升空间. 为了解决这些局限性, 提出基于奇异值分解的后门攻击方法. 所提方法有两种实现形式: 第1种方式是将图片的部分奇异值直接置零, 得到的图片有一定的压缩效果, 这可以作为有效的后门触发标志物. 第2种是把进攻目标类的奇异向量信息注入到图片的左右奇异向量中, 也能实现有效的后门进攻. 两种处理得到的后门的图片, 从视觉上来看和原图基本保持一致. 实验表明, 所提方法证明奇异值分解可以有效地利用在后门攻击算法中, 并且能在多个数据集上以非常高的成功率进攻神经网络.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006959
    [摘要] (138) [HTML] (0) [PDF 5.88 M] (385)
    摘要:
    Python语言的开放性和易用性使其成为最常用的编程语言之一. 其形成的PyPI生态系统在为开发者提供便利的同时, 也成为攻击者进行漏洞攻击的重要目标. 在发现Python漏洞之后, 如何准确、全面地评估漏洞影响范围是应对Python漏洞的关键. 然而当前的Python漏洞影响范围评估方法主要依靠包粒度的依赖关系分析, 会产生大量误报; 现有的函数粒度的Python程序分析方法由于上下文不敏感等导致存在准确性问题, 应用于实际的漏洞影响范围评估也会产生误报. 提出一种基于静态分析的面向PyPI生态系统的漏洞影响范围评估方法PyVul++. 首先构建PyPI生态系统的索引, 然后通过漏洞函数识别发现受漏洞影响的候选包, 进一步通过漏洞触发条件验证漏洞包, 实现函数粒度的漏洞影响范围评估. PyVul++改进了Python代码函数粒度的调用分析能力, 在基于PyCG的测试集上的分析结果优于其他工具(精确率86.71%, 召回率83.20%). 通过PyVul++对10个Python CVE漏洞进行PyPI生态系统(385855个包)影响范围评估, 相比于pip-audit等工具发现了更多漏洞包且降低了误报. 此外, 在10个Python CVE漏洞影响范围评估实验中, PyVul++新发现了目前PyPI生态系统中仍有11个包存在引用未修复的漏洞函数的安全问题.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006964
    [摘要] (137) [HTML] (0) [PDF 4.98 M] (450)
    摘要:
    域名是实施网络犯罪行为的重要环节, 现有的恶意域名检测方法一方面难以利用丰富的拓扑和属性信息, 另一方面需要大量的标签数据, 检测效果受限而成本较高. 针对该问题, 提出一种基于图对比学习的恶意域名检测方法, 以域名和IP地址作为异构图的两类节点并根据其属性建立对应节点的特征矩阵, 依据域名之间的包含关系、相似度度量以及域名和IP地址之间对应关系构建3种元路径; 在预训练阶段, 使用基于非对称编码器的对比学习模型, 避免图数据增强操作对图结构和语义的破坏, 也降低对计算资源的需求; 使用归纳式的图神经网络图编码器HeteroSAGE和HeteroGAT, 采用以节点为中心的小批量训练模式来挖掘目标节点和邻居节点的聚合关系, 避免GCN等直推式图神经网络在动态场景下适用性较差的问题; 下游分类检测任务则对比使用了逻辑回归、随机森林等算法. 在公开数据上的实验结果表明检测性能相比已有工作提高2–6个百分点.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006945
    [摘要] (353) [HTML] (0) [PDF 1.19 M] (449)
    摘要:
    Jacobi计算是一种模板计算, 在科学计算领域具有广泛的应用. 围绕Jacobi计算的性能优化是一个经典的课题, 其中循环分块是一种较有效的优化方法. 现有的循环分块主要关注分块对并行通信和程序局部性的影响, 缺少对负载均衡和向量化等其他因素的考虑. 面向多核计算架构, 分析比较不同分块方法, 并选择一种先进的六边形分块作为加速Jacobi计算的主要方法. 在分块大小选择上, 综合考虑分块对程序向量化效率、局部性和计算核负载均衡等多方面的影响, 提出一种六边形分块大小选择算法Hexagon_TSS. 实验表明所提算法相对原始串行程序计算方法, 最好情况可将L1数据缓存失效率降低至其5.46%, 最大加速比可达24.48, 并且具有良好的可扩展性.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006947
    [摘要] (138) [HTML] (0) [PDF 1.64 M] (390)
    摘要:
    软件变更预测旨在识别出具有变更倾向的模块, 可以帮助软件管理者和开发人员有效地分配资源, 降低维护开销. 从代码中提取有效的特征在构建准确的预测模型中起着重要作用. 近年来, 研究人员从利用传统的手工特征进行预测转向具有强大表示能力的语义特征, 他们从抽象语法树(abstract syntax tree, AST)的节点序列中提取语义特征构建模型. 但已有研究忽略了AST的结构信息以及代码中丰富的语义信息, 如何提取代码的语义特征仍然是一个具有挑战性的问题. 为此, 提出一种基于混合图表示的变更预测方法. 该模型首先结合AST、控制流图(control flow graph, CFG)、数据流图(data flow graph, DFG)等结构信息构建代码的程序图表示, 接着利用图神经网络学习出程序图的语义特征, 根据该特征预测变更倾向性. 所提模型能够融合各种语义信息以更好地表征代码. 在多组变更数据集上开展与最新变更预测方法的对比实验, 验证了所提方法的有效性.
    优先出版日期:  2023-09-13 , DOI: 10.13328/j.cnki.jos.006928
    [摘要] (193) [HTML] (0) [PDF 7.55 M] (407)
    摘要:
    检测训练集分布之外的分布外(out-of-distribution, OOD)样本对于深度神经网络(deep neural network, DNN)分类器在开放环境的部署至关重要. 检测OOD样本可以视为一种二分类问题, 即把输入样本分类为“分布内(in-distribution, ID)”类或“分布外”类. 进一步地, 检测器自身还可能遭受到恶意的对抗攻击而被再次绕过. 这些带有恶意扰动的OOD样本称为对抗OOD样本. 构建鲁棒的OOD检测器以检测对抗OOD样本是一项更具挑战性的任务. 为习得可分离且对恶意扰动鲁棒的表示, 现有方法往往利用辅助的干净OOD样本邻域内的对抗OOD样本来训练DNN. 然而, 由于辅助的OOD训练集与原ID训练集的分布差异, 训练对抗OOD样本无法足够有效地使分布内决策边界对对抗扰动真正鲁棒. 从ID样本的邻域内生成的对抗ID样本拥有与原ID样本近乎一样的语义信息, 是一种离分布内区域更近的OOD样本, 对提升分布内边界对对抗扰动的鲁棒性很有效. 基于此, 提出一种半监督的对抗训练方法——谛听, 来构建鲁棒的OOD检测器, 用以同时检测干净OOD样本和对抗OOD样本. 谛听将对抗ID样本视为一种辅助的“近”-OOD样本, 并将其与其他辅助的干净OOD样本和对抗OOD样本联合训练DNN, 以提升OOD检测的鲁棒性. 实验结果表明, 谛听在检测由强攻击生成的对抗OOD样本上具有显著的优势, 同时在原分类主任务及检测干净OOD样本上保持先进的性能. 开源地址: https://gitee.com/zhiyang3344/diting.
    优先出版日期:  2023-09-06 , DOI: 10.13328/j.cnki.jos.006963
    [摘要] (125) [HTML] (0) [PDF 4.16 M] (454)
    摘要:
    属性级情感分类任务旨在判断句子针对给定属性的情感极性, 因其广泛应用而备受关注. 该任务的关键在于识别给定属性相关的上下文描述, 并根据上下文内容判断发文者针对相应属性的情感倾向. 统计发现, 大约30%的评论中并不包含关于给定属性的明确情感描述, 但仍然传达了清晰的情感倾向, 这被称为隐式情感表达. 近年来, 基于注意力机制的神经网络方法在情感分析中得到了成功应用. 但该类方法只能捕捉属性相关的显式情感描述, 而缺乏对隐含情感的有效分析和挖掘, 且往往将属性词与句子上下文分别建模, 使得属性词的表示缺乏上下文语义. 针对以上两个问题, 提出一种交叉融合属性局部和句子全局上下文信息的属性级情感分类方法, 并根据隐式和显式情感表达句子不同的分类难度采用课程学习提高模型的分类性能. 实验表明, 所提方法不仅对显式情感表达句子的属性情感倾向识别准确率高, 而且能够有效学习隐式情感表达句子的情感类别.
    优先出版日期:  2023-09-06 , DOI: 10.13328/j.cnki.jos.006960
    [摘要] (182) [HTML] (0) [PDF 4.28 M] (460)
    摘要:
    基于图的无监督跨模态哈希学习具有存储空间小、检索效率高等优点, 受到学术界和工业界的广泛关注, 已成为跨模态检索不可或缺的工具之一. 然而, 图构造的高计算复杂度阻碍其应用于大规模多模态应用. 主要尝试解决基于图的无监督跨模态哈希学习面临的两个重要挑战: 1)在无监督跨模态哈希学习中如何高效地构建图? 2)如何解决跨模态哈希学习中的离散值优化问题? 针对这两个问题, 分别提出基于锚点图的跨模态学习和可微分哈希层. 具体地, 首先从训练集中随机地选择若干图文对作为锚点集, 利用该锚点集作为中介计算每批数据的图矩阵, 以该图矩阵指导跨模态哈希学习, 从而能极大地降低空间与时间开销; 其次, 提出的可微分哈希层可在网络前向传播时直接由二值编码计算, 在反向传播时亦可产生梯度进行网络更新, 而无需连续值松弛, 从而具有更好的哈希编码效果; 最后, 引入跨模态排序损失, 使得在训练过程中考虑排序结果, 从而提升跨模态检索正确率. 通过在3个通用数据集上与10种跨模态哈希算法进行对比, 验证了提出算法的有效性.
    优先出版日期:  2023-09-06 , DOI: 10.13328/j.cnki.jos.006969
    [摘要] (196) [HTML] (0) [PDF 7.82 M] (417)
    摘要:
    优先级用于解决诸如在资源共享和安全设计等方面的冲突, 已经成为实时系统设计中不可或缺的一部分. 对于引入优先级的实时系统, 每个任务都会被分配优先级, 这就导致低优先级的任务在运行时可能会被高优先级的任务抢占资源, 进而给实时系统带来抢占式调度问题. 现有研究, 缺乏一种可以直观表示任务的优先级以及任务之间的依赖关系的建模及自动验证方法. 为此, 提出抢占式优先级时间自动机(PPTA)并引入抢占式优先级时间自动机网络(PPTAN). 首先, 通过在时间自动机上添加变迁的优先级来表示任务的优先级, 再利用变迁将具有依赖关系的任务相关联, 从而可以利用PPTA建模带有优先级的实时任务. 在时间自动机上添加阻塞位置, 进而利用PPTAN建模优先级抢占式调度问题. 其次, 提出基于模型的转换方法, 将抢占式优先级时间自动机映射到自动验证工具UPPAAL中. 最后, 通过建模多核多任务实时系统实例并与其他模型进行对比, 说明所提模型不仅适用于建模优先级抢占式调度问题并可对其进行准确验证分析.
    优先出版日期:  2023-09-06 , DOI: 10.13328/j.cnki.jos.006979
    [摘要] (212) [HTML] (0) [PDF 5.17 M] (497)
    摘要:
    原型网络直接应用于小样本命名实体识别(few-shot named entity recognition, FEW-NER)时存在以下问题: 非实体之间不具有较强的语义关系, 对实体和非实体都采用相同的方式构造原型将会造成非实体原型不能准确表示非实体的语义特征; 仅使用平均实体向量表示作为原型的计算方式将难以捕捉语义特征相差较大的同类实体. 针对上述问题, 提出基于细粒度原型网络的小样本命名实体识别(FEW-NER based on fine-grained prototypical networks, FNFP)方法, 有助于提高小样本命名实体识别的标注效果. 首先, 为不同的查询集样本构造不同的非实体原型, 捕捉句子中关键的非实体语义特征, 得到更为细粒度的原型, 提升模型对非实体的识别效果; 然后, 设计一个不一致性度量模块以衡量同类实体之间的不一致性, 对实体与非实体采用不同的度量函数, 从而减小同类样本之间的特征表示, 提升原型的特征表示能力; 最后, 引入维特比解码器捕捉标签转换关系, 优化最终的标注序列. 实验结果表明, 采用基于细粒度原型网络的小样本命名实体识别方法, 在大规模小样本命名实体识别数据集FEW-NERD上, 较基线方法获得提升; 同时在跨领域数据集上验证所提方法在不同领域场景下的泛化能力.
    优先出版日期:  2023-09-06 , DOI: 10.13328/j.cnki.jos.006980
    [摘要] (180) [HTML] (0) [PDF 6.52 M] (435)
    摘要:
    软件在开发和维护过程中会产生大量缺陷报告, 可为开发人员定位缺陷提供帮助. 基于信息检索的缺陷定位方法通过分析缺陷报告内容和源码文件的相似度来定位缺陷所在位置, 已在文件、函数等粗粒度级别上取得了较为精确的定位效果, 但由于其定位粒度较粗, 仍需要耗费大量人力和时间成本检查可疑文件和函数片段. 为此, 提出一种基于历史缺陷信息检索的语句级软件缺陷定位方法STMTLocator, 首先检索出与被测程序缺陷报告相似度较高的历史缺陷报告, 并提取其中的历史缺陷语句; 然后根据被测程序源码文件与缺陷报告的文本相似度检索可疑文件, 并提取其中的可疑语句; 最后计算可疑语句与历史缺陷语句的相似度, 并进行降序排列, 以定位缺陷语句. 为评估STMTLocator的缺陷定位性能, 使用Top@NMRR等评价指标在基于Defects4J和JIRA构建的数据集上进行对比实验. 实验结果表明, 相比静态缺陷定位方法BugLocator, STMTLocator在MRR指标上提升近4倍, 在Top@1指标上多定位到7条缺陷语句; 相比动态缺陷定位方法Metallaxis和DStar, STMTLocator完成一个版本缺陷定位平均消耗的时间减少98.37%和63.41%, 且具有不需要设计和执行测试用例的显著优势.
    优先出版日期:  2023-08-30 , DOI: 10.13328/j.cnki.jos.006961
    [摘要] (196) [HTML] (0) [PDF 6.56 M] (477)
    摘要:
    缺陷定位获取并分析测试用例集的运行信息, 从而度量出各个语句为缺陷的可疑性. 测试用例集由输入域数据构建, 包含成功测试用例和失败测试用例两种类型. 由于失败测试用例在输入域分布不规律且比例很低, 失败测试用例数量往往远少于成功测试用例数量. 已有研究表明, 少量失败测试用例会导致测试用例集出现类别不平衡问题, 严重影响着缺陷定位有效性. 为了解决这个问题, 提出基于对抗生成网络的缺陷定位模型域数据增强方法. 该方法基于模型域(即缺陷定位频谱信息)而非传统输入域(即程序输入), 利用对抗生成网络合成覆盖最小可疑集合的模型域失败测试用例, 从模型域上解决类别不平衡的问题. 实验结果表明, 所提方法大幅提升了11种典型缺陷定位方法的效能.
    优先出版日期:  2023-08-30 , DOI: 10.13328/j.cnki.jos.006962
    [摘要] (248) [HTML] (0) [PDF 7.76 M] (511)
    摘要:
    随着互联网信息技术的高速发展, 线上学习资源的爆炸式增长引起了“信息过载”与“学习迷航”问题. 在缺乏专家指导的场景中, 用户难以明确自己的学习需求并从海量的学习资源中选择合适的内容进行学习. 教育领域推荐方法能够基于用户的历史学习行为提供学习资源的个性化推荐, 因此该方法近年来受到大量研究人员的广泛关注. 然而, 现有的教育领域推荐方法在学习需求感知时忽略了对知识点之间复杂关系的建模, 同时缺乏考虑用户学习需求的动态性变化, 导致推荐的学习资源不够精准. 针对上述问题, 提出一种基于静态与动态学习需求感知的知识点推荐方法, 通过静态感知与动态感知相结合的方式建模复杂知识关联下的用户学习行为. 对于静态学习需求感知, 创新性地设计一种基于知识点先修后继元路径引导的注意力图卷积网络, 通过建模知识点之间先修后继关系的复杂约束, 能够消除其他非学习需求因素的干扰, 从而精准地捕获用户在细粒度知识点层面上的静态学习需求; 对于动态学习需求感知, 所提方法以课程为单元聚合知识点嵌入以表征用户在不同时刻的知识水平, 然后采用循环神经网络建模编码用户的知识水平序列, 能够有效地挖掘用户知识水平变化中蕴含的动态学习需求; 最后, 对获得的静态与动态学习需求进行融合, 在同一框架下建模静态与动态学习需求之间的兼容性, 促进这两种学习需求相互补充, 以实现细粒度的个性化知识点推荐. 实验表明, 在两个公开数据集上, 所提方法能够有效地感知用户的学习需求并提供个性化的知识点推荐, 在多种评估指标上优于主流的推荐方法.
    优先出版日期:  2023-08-30 , DOI: 10.13328/j.cnki.jos.006923
    [摘要] (308) [HTML] (0) [PDF 7.32 M] (583)
    摘要:
    内核堆漏洞是目前操作系统安全的主要威胁之一, 用户层攻击者通过触发漏洞能够泄露或修改内核敏感信息, 破坏内核控制流, 甚至获取root权限. 但是由于漏洞的数量和复杂性剧增, 从漏洞首次被报告到开发者给出修复补丁(patch)往往需要较长时间, 而内核现阶段采用的缓解机制均能被稳定绕过. 为此提出一种基于eBPF的内核堆漏洞动态缓解框架, 用于在修复时间窗口中降低内核安全风险. 动态缓解框架采取数据对象空间随机化策略, 在每次分配时为漏洞报告中涉及的数据对象分配随机地址, 并充分利用eBPF的动态、安全特性将空间随机化对象在运行时注入内核, 使得攻击者无法准确放置攻击负载, 堆漏洞几乎无法被利用. 评估40个真实内核堆漏洞, 并收集12个绕过现有缓解机制的攻击程序进行进一步分析和实验, 证实动态缓解框架提供充足的安全性. 性能测试表明, 即使在严苛情况下大量分配的4类数据对象, 仅对系统造成约1%的性能损耗和可以忽略不计的内存损耗, 同时增加保护对象的数量几乎不引入额外性能损耗. 所提机制对比相关工作适用范围更广, 安全性更强, 而且无需安全专家发布的漏洞补丁, 可以根据漏洞报告生成缓解程序, 具备广阔应用前景.
    优先出版日期:  2023-08-30 , DOI: 10.13328/j.cnki.jos.006925
    [摘要] (168) [HTML] (0) [PDF 7.14 M] (422)
    摘要:
    正则表达式在计算机科学的许多领域具有广泛应用. 然而, 由于正则表达式语法比较复杂, 并且允许使用大量元字符, 导致开发人员在定义和使用时容易出错. 测试是保证正则表达式语义正确性的实用和有效手段, 常用的方法是根据被测表达式生成一些字符串, 并检查它们是否符合预期. 现有的测试数据生成大多只关注正例串, 而研究表明, 实际开发中存在的错误大部分在于定义的语言比预期语言小, 这类错误只能通过反例串才能发现. 研究基于变异的正则表达式反例测试串生成. 首先通过变异向被测表达式中注入缺陷得到一组变异体, 然后在被测表达式所定义语言的补集中选取反例字符串揭示相应变异体所模拟的错误. 为了能够模拟复杂缺陷类型, 以及避免出现变异体特化而无法获得反例串的问题, 引入二阶变异机制. 同时采取冗余变异体消除、变异算子选择等优化技术对变异体进行约简, 从而控制最终生成的测试集规模. 实验结果表明, 与已有工具相比, 所提算法生成的反例测试串规模适中, 并且具有较强的揭示错误能力.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006926
    [摘要] (190) [HTML] (0) [PDF 4.37 M] (458)
    摘要:
    超图是普通图的泛化表示, 在许多应用领域都很常见, 包括互联网、生物信息学和社交网络等. 独立集问题是图分析领域的一个基础性研究问题, 传统的独立集算法大多都是针对普通图数据, 如何在超图数据上实现高效的最大独立集挖掘是一个亟待解决的问题. 针对这一问题, 提出一种超图独立集的定义. 首先分析超图独立集搜索的两个特性, 然后提出一种基于贪心策略的基础算法. 接着提出一种超图近似最大独立集搜索的剪枝框架即精确剪枝与近似剪枝相结合, 以精确剪枝策略缩小图的规模, 以近似剪枝策略加快搜索速度. 此外, 还提出4种高效的剪枝策略, 并对每种剪枝策略进行理论证明. 最后, 通过在10个真实超图数据集上进行实验, 结果表明剪枝算法可以高效地搜索到更接近于真实结果的超图最大独立集.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006927
    [摘要] (205) [HTML] (0) [PDF 4.30 M] (482)
    摘要:
    实体识别是信息抽取的关键技术. 相较于普通文本, 中文医疗文本的实体识别任务往往面对大量的嵌套实体. 以往识别实体的方法往往忽视了医疗文本本身所特有的实体嵌套规则而直接采用序列标注方法, 为此, 提出一种融合实体嵌套规则的中文实体识别方法. 所提方法在训练过程中将实体的识别任务转化为实体的边界识别与边界首尾关系识别的联合训练任务, 在解码过程中结合从实际医疗文本中所总结出来的实体嵌套规则对解码结果进行过滤, 从而使得识别结果能够符合实际文本中内外层实体嵌套组合的组成规律. 在公开的医疗文本实体识别的实验上取得良好的效果. 数据集上的实验表明, 所提方法在嵌套类型实体识别性能上显著优于已有的方法, 在整体准确率方面比最先进的方法提高0.5%.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006929
    [摘要] (243) [HTML] (0) [PDF 5.32 M] (592)
    摘要:
    匿名凭证作为一种隐私保护的数字身份认证技术, 在认证用户数字身份有效性的同时, 能够保护用户身份隐私, 广泛应用于匿名身份认证、匿名通证、去中心化的数字身份管理系统等. 现有的匿名凭证通常采用承诺-签名-证明的构造范式, 通常要求采用的签名算法具备重随机化特性, 如CL系列签名、PS系列签名及结构保持签名. 现实应用中多采用ECDSA、Schnorr、SM2等数字签名进行数字身份认证, 但其缺乏对用户身份隐私的保护. 因此, 在认证的同时, 保护身份的隐私性, 构造兼容ECDSA、Schnorr、SM2等数字签名的匿名凭证具有一定的现实意义. 探索基于SM2数字签名构造匿名凭证协议的方法. 在申请证书阶段, 借助Pedersen承诺对用户属性进行承诺, 同时依据SM2签名消息为$ H(m) $的结构特点, 证明Pedersen承诺消息与哈希承诺中消息的相等性. 为实现这种代数结构和非代数结构陈述的等价性证明, 借鉴ZKB++技术对承诺消息进行转化, 进而实现跨域证明, 并签发基于SM2数字签名的授权证书. 在匿名凭证展示阶段, 结合零知识证明技术证明持有SM2数字签名, 保证了用户的匿名性. 给出基于SM2数字签名的匿名凭证协议的具体构造, 并进一步证明该协议的安全性. 最后, 通过对协议的计算复杂度分析与算法执行效率测试验证协议的有效性和可用性.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006930
    [摘要] (149) [HTML] (0) [PDF 5.82 M] (504)
    摘要:
    斯诺登事件后, 以算法替换攻击为代表的后门攻击带来的威胁受到广泛关注. 该类攻击通过不可检测的篡改密码协议参与方的算法流程, 在算法中嵌入后门来获得秘密信息. 为协议参与方配置密码学逆向防火墙(cryptographic reverse firewall, CRF)是抵抗算法替换攻击的主要手段. 基于身份加密(identity based encryption, IBE)作为一种广泛应用的公钥加密体制, 亟需构建合适的CRF方案. 然而, 已有工作仅实现了CRF再随机化的功能, 忽视了将用户私钥直接发送给作为第三方的CRF的安全风险. 针对上述问题, 首先给出适用于IBE的CRF安全性质的形式化定义和安全模型. 其次提出可再随机化且密钥可延展的无安全信道IBE (rerandomizable and key-malleable secure channel free IBE, RKM-SFC-IBE)的形式化定义并给出传统IBE转化为RKM-SFC-IBE以及增加匿名性的方法. 最后基于RKM-SFC-IBE给出对应CRF的一般性构造方法, 并给出标准模型下IBE方案的CRF构造实例与性能优化方法. 与已有工作相比, 提出完备的适用于IBE的CRF安全模型, 给出一般构造方法, 明确为表达力更强的加密方案构造CRF时的基本原则.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006931
    [摘要] (191) [HTML] (0) [PDF 3.94 M] (427)
    摘要:
    对于合同文本中要素和条款两类信息的准确提取, 可以有效提升合同的审查效率, 为贸易各方提供便利化服务. 然而当前的合同信息抽取方法一般训练单任务模型对要素和条款分别进行抽取, 并没有深挖合同文本的特征, 忽略了不同任务间的关联性. 因此, 采用深度神经网络结构对要素抽取和条款抽取两个任务间的相关性进行研究, 并提出多任务学习方法. 所提方法首先将上述两种任务进行融合, 构建一种应用于合同信息抽取的基本多任务学习模型; 然后对其进行优化, 利用Attention机制进一步挖掘其相关性, 形成基于Attention机制的动态多任务学习模型; 最后针对篇章级合同文本中复杂的语义环境, 在前两者的基础上提出一种融合词汇知识的动态多任务学习模型. 实验结果表明, 所提方法可以充分捕捉任务间的共享特征, 不仅取得了比单任务模型更好的信息抽取结果, 而且能够有效解决合同文本中要素与条款间实体嵌套的问题, 实现合同要素与条款的信息联合抽取. 此外, 为了验证该方法的鲁棒性, 在多个领域的公开数据集上进行实验, 结果表明该方法的效果均优于基线方法.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006932
    [摘要] (220) [HTML] (0) [PDF 8.12 M] (523)
    摘要:
    对抗文本是一种能够使深度学习分类器作出错误判断的恶意样本, 敌手通过向原始文本中加入人类难以察觉的微小扰动制作出能欺骗目标模型的对抗文本. 研究对抗文本生成方法, 能对深度神经网络的鲁棒性进行评价, 并助力于模型后续的鲁棒性提升工作. 当前针对中文文本设计的对抗文本生成方法中, 很少有方法将鲁棒性较强的中文BERT模型作为目标模型进行攻击. 面向中文文本分类任务, 提出一种针对中文BERT的攻击方法Chinese BERT Tricker. 该方法使用一种汉字级词语重要性打分方法——重要汉字定位法; 同时基于掩码语言模型设计一种包含两类策略的适用于中文的词语级扰动方法实现对重要词语的替换. 实验表明, 针对文本分类任务, 所提方法在两个真实数据集上均能使中文BERT模型的分类准确率大幅下降至40%以下, 且其多种攻击性能明显强于其他基线方法.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006936
    [摘要] (174) [HTML] (0) [PDF 5.52 M] (467)
    摘要:
    作为一种解决标签模糊性问题的新学习范式, 标记分布学习(LDL)近年来受到了广泛的关注. 为了进一步提升标记分布学习的预测性能, 提出一种联合深度森林与异质集成的标记分布学习方法(LDLDF). 所提方法采用深度森林的级联结构模拟具有多层处理结构的深度学习模型, 在级联层中组合多个异质分类器增加集成的多样性. 相较于其他现有LDL方法, LDLDF能够逐层处理信息, 学习更好的特征表示, 挖掘数据中丰富的语义信息, 具有强大的表示学习能力和泛化能力. 此外, 考虑到深层模型可能出现的模型退化问题, LDLDF采用一种层特征重用机制(layer feature reuse)降低模型的训练误差, 有效利用深层模型每一层的预测能力. 大量的实验结果表明, 所提方法优于近期的同类方法.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006937
    [摘要] (243) [HTML] (0) [PDF 11.11 M] (653)
    摘要:
    目标检测被广泛应用到自动驾驶, 工业, 医疗等各个领域. 利用目标检测算法解决不同领域中的关键任务逐渐成为主流. 然而基于深度学习的目标检测模型在对抗样本攻击下, 模型的鲁棒性存在严重不足, 通过加入微小扰动构造的对抗样本很容易使模型预测出错. 这极大限制了目标检测模型在关键安全领域的应用. 在实际应用中的模型普遍是黑盒模型, 现有的针对目标检测模型的黑盒攻击相关研究不足, 存在鲁棒性评测不全面, 黑盒攻击成功率较低, 攻击消耗资源较高等问题. 针对上述问题, 提出基于生成对抗网络的目标检测黑盒攻击算法, 所提算法利用融合注意力机制的生成网络直接输出对抗扰动, 并使用替代模型的损失和所提的类别注意力损失共同优化生成网络参数, 可以支持定向攻击和消失攻击两种场景. 在Pascal VOC数据集和MS COCO数据集上的实验结果表明, 所提方法比目前攻击方法的黑盒迁移攻击成功率更高, 并且可以在不同数据集之间进行迁移攻击.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006941
    [摘要] (227) [HTML] (0) [PDF 2.02 M] (482)
    摘要:
    传输层是网络协议栈的关键组成部分, 负责为不同主机间的应用程序提供端到端的服务. 已有的传输层协议如TCP等为用户提供了基本的差错控制和确认应答等安全保护机制, 在一定程度上保证了不同主机间应用程序收发报文的一致性. 但现有的传输层安全保护机制存在严重的缺陷, 如TCP报文的序列号容易被猜测推理, 报文校验和的计算依赖于有漏洞的补码求和算法等. 这导致现有的传输层安全机制并不能保证报文的完整性和安全性, 从而允许一个远程的攻击者伪造出一个报文, 注入到目标网络流中, 对目标网络流形成污染或攻击. 针对传输层的攻击发生在网络协议栈的基础层次, 可以旁路掉上层应用的安全保护机制, 对网络基础设施造成严重的危害. 深入研究近年来针对网络协议栈的各种攻击和相关安全漏洞, 提出一种基于轻量级链式验证的传输层安全性增强方法LightCTL. 所提方法基于哈希验证的方式, 使TCP连接双方能够对传输层报文形成彼此可验证的共识, 避免攻击者或中间人窃取和伪造敏感信息, 从而解决网络协议栈面临的典型安全威胁, 包括基于序列号推理的TCP连接重置攻击、TCP劫持攻击、SYN洪泛攻击、中间人攻击、报文重放攻击等. LightCTL不需要修改中间网络设备如路由器等的协议栈, 只需对终端协议栈中的校验和相关部分进行修改, 因此方法易于部署, 同时显著提升了网络系统的安全性.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006951
    [摘要] (175) [HTML] (0) [PDF 5.82 M] (482)
    摘要:
    事实验证旨在检查一个文本陈述是否被给定的证据所支持. 由于表格结构上具有依赖性、内容上具有隐含性, 以表格作为证据的事实验证任务仍面临很多挑战. 现有工作或者利用逻辑表达式来解析基于表格证据的陈述, 或者设计表格感知神经网络来编码陈述-表格对, 以此实现基于表格的事实验证任务. 但是, 这些方法没有充分利用陈述背后隐含的表格信息, 从而导致模型的推理性能下降, 并且基于表格证据的中文陈述具有更加复杂的语法和语义, 也给模型推理带来更大的困难. 为此, 提出基于胶囊异构图注意力网络(CapsHAN)的中文表格型数据事实验证方法, 所提方法能充分理解陈述的结构和语义, 进而挖掘和利用陈述所隐含的表格信息, 有效提升基于表格的事实验证任务准确性. 具体而言, 首先通过对陈述进行依存句法分析和命名实体识别来构建异构图, 接着对该图采用异构图注意力网络和胶囊图神经网络进行学习和理解, 然后将得到的陈述文本表示与经过编码的表格文本表示进行拼接, 最后完成结果的预测. 更进一步, 针对现有中文表格型事实验证数据集匮乏而难以支持基于表格的事实验证方法性能评价的难题, 首先对主流TABFACT和INFOTABS表格事实验证英文数据集进行中文转化, 并且专门针对中文表格型数据的特点构建了基于UCL国家标准的数据集UCLDS, 该数据集将维基百科信息框作为人工注释的自然语言陈述的证据, 并被标记为蕴含、反驳或中立3类. UCLDS在同时支持单表和多表推理方面比传统TABFACT和INFOTABS数据集更胜一筹. 在上述3个中文基准数据集上的实验结果表明, 所提模型的表现均优于基线模型, 证明该模型在基于中文表格的事实验证任务上的优越性.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006924
    [摘要] (166) [HTML] (0) [PDF 9.25 M] (469)
    摘要:
    软件缺陷定位是指找出与软件失效相关的程序元素. 当前的缺陷定位技术仅能产生函数级或语句级的定位结果. 这种粗粒度的定位结果会影响人工调试程序和软件缺陷自动修复的效率和效果. 专注于细粒度地识别导致软件缺陷的具体代码令牌, 为代码令牌建立抽象语法树路径, 提出基于指针神经网络的细粒度缺陷定位模型来预测出具体的缺陷代码令牌和修复该令牌的具体操作行为. 开源项目中的大量缺陷补丁数据集包含大量可供训练的数据, 且基于抽象语法树构建的路径可以有效捕获程序结构信息. 实验结果表明所训练出的模型能够准确预测缺陷代码令牌并显著优于基于统计的与基于机器学习的基线方法. 另外, 为了验证细粒度的缺陷定位结果可以贡献于缺陷自动修复, 基于细粒度的缺陷定位结果设计两种程序修复流程, 即代码补全工具去预测正确令牌的方法和启发式规则寻找合适代码修复元素的方法, 结果表明两种方法都能有效解决软件缺陷自动修复中的过拟合问题.
    优先出版日期:  2023-08-23 , DOI: 10.13328/j.cnki.jos.006914
    [摘要] (337) [HTML] (0) [PDF 6.52 M] (592)
    摘要:
    高精度联邦学习模型的训练需要消耗大量的用户本地资源, 参与训练的用户能够通过私自出售联合训练的模型获得非法收益. 为实现联邦学习模型的产权保护, 利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征, 构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor, FLWB)方案, 能够允许各参与训练的用户在其本地模型中分别嵌入私有水印, 再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印. 之后提出分步训练方法增强各私有后门水印在全局模型的表达效果, 使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印. 理论分析证明了FLWB方案的安全性, 实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印. 最后, 采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试, 其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印, 在4种不同的微调攻击下能保留90%以上的水印, 具有很好的鲁棒性.
    优先出版日期:  2023-08-16 , DOI: 10.13328/j.cnki.jos.006904
    [摘要] (223) [HTML] (0) [PDF 1.30 M] (484)
    摘要:
    代码评审是现代软件开发过程中被广泛应用的最佳实践之一, 其对于软件质量保证和工程能力提升都具有重要意义. 代码评审意见是代码评审最主要和最重要的产出之一, 其不仅是评审者对代码变更的质量感知, 而且是作者修复代码缺陷和提升质量的重要参考. 目前, 全球各大软件组织都相继制定了代码评审指南, 但仍缺少针对代码评审意见质量的有效的评价方式和方法. 为了实现可解释的、自动化的评价, 开展文献综述、案例分析等若干实证研究, 并在此基础上提出一种基于多标签学习的代码评审意见质量评价方法. 实验使用某大型软件企业的34个商业项目的共计17 000条评审意见作为数据集. 结果表明所提出的方法能够有效地评价代码评审意见质量属性和质量等级. 除此以外, 还提供若干建模经验, 如评审意见标注和校验等, 旨在帮助那些受代码评审困扰的软件组织更好地实施所提出的方法.
    优先出版日期:  2023-08-16 , DOI: 10.13328/j.cnki.jos.006939
    [摘要] (567) [HTML] (0) [PDF 5.60 M] (511)
    摘要:
    Internet传输层协议需要依赖于确认(ACK)机制提供的反馈信息, 实现拥塞控制和可靠传输等功能. 以Internet传输协议演化的历史为线索, 回顾传输控制领域中的确认机制, 并讨论现有确认机制中需要解决的问题; 基于“类型-触发条件-信息” 三要素, 提出按需确认机制及其设计原则, 重点分析确认机制和拥塞控制、丢包恢复等传输协议子模块之间的耦合关系; 结合设计原则, 详细阐述一种可行的按需确认机制实现——TACK机制, 并对相关概念进行系统的、深入的分析和澄清. 最后结合按需确认机制面临的挑战, 给出几个有意义的研究方向.
    优先出版日期:  2023-08-09 , DOI: 10.13328/j.cnki.jos.006912
    [摘要] (502) [HTML] (0) [PDF 3.35 M] (445)
    摘要:
    适配器签名, 又称无脚本脚本, 是解决区块链应用(如密码货币)中扩展性差、吞吐量低等问题的重要密码技术. 适配器签名可看作数字签名关于困难关系的扩展, 同时具有签名授权和证据提取两种功能, 在区块链应用中具有以下优点: (1) 降低链上成本; (2) 提高交易的可替代性; (3) 突破区块链脚本语言限制. SM2签名是我国自主设计的国家标准签名算法, 在各种重要信息系统中有着广泛应用. 基于SM2签名构造出高效的适配器签名方案, 并在随机谕言机模型下给出安全性证明. 所提方案结合SM2签名结构, 可避免在预签名阶段生成额外的零知识证明, 与现有ECDSA/SM2适配器签名相比更加高效, 其中预签名生成效率提升4倍, 预签名验证效率提升3倍. 随后, 基于SM2协同签名, 构造分布式SM2适配器签名, 可避免单点故障问题, 提升签名私钥安全. 最后, 在实际应用方面, 基于SM2适配器签名构造适用于一对多场景下安全高效的批量原子交换协议.
    优先出版日期:  2023-08-09 , DOI: 10.13328/j.cnki.jos.006915
    [摘要] (221) [HTML] (0) [PDF 9.34 M] (387)
    摘要:
    推荐系统在成熟的数据挖掘技术推动下, 已能高效地利用评分数据、行为轨迹等显隐性信息, 再与复杂而先进的深度学习技术相结合, 取得了很好的效果. 同时, 其应用需求也驱动着对基础数据的深度挖掘与利用, 以及对技术要求的减负成为一个研究热点. 基于此, 提出一种利用GCN (graph convolutional network)方法进行深度信息融合的轻量级推荐模型LG_APIF. 该模型结合行为记忆, 通过艾宾浩斯遗忘曲线模拟用户兴趣变化过程, 采用线性回归等相对轻量的传统方法挖掘项目的自适应周期等深度信息; 分析用户当前的兴趣分布, 计算项目的兴趣量, 以获取用户的潜在兴趣类型; 构建用户-类型-项目三元组的图结构, 并结合减负后的GCN技术来生成最终的项目推荐列表. 实验验证所提方法的有效性, 通过与8个经典模型在Last.fm, Douban, Yelp, MovieLens数据集中的对比, 表明该方法在Precision, RecallNDCG指标上都得到良好改善, 其中, Precision平均提升2.11%, Recall平均提升1.01%, NDCG平均提升1.48%.
    优先出版日期:  2023-08-09 , DOI: 10.13328/j.cnki.jos.006921
    [摘要] (178) [HTML] (0) [PDF 10.71 M] (605)
    摘要:
    人们对图像显示设备高分辨率和逼真视觉感知的需求随着现代信息技术的发展日益增长, 这对计算机软硬件提出了更高要求, 也为渲染技术在性能与工作负载上带来更多挑战. 利用深度神经网络等机器学习技术对渲染图像进行质量改进和性能提升成为了计算机图形学热门的研究方向, 其中通过网络推理将低分辨率图像进行上采样获得更加清晰的高分辨率图像是提升图像生成性能并保证高清细节的一个重要途径. 而渲染引擎在渲染流程中产生的几何缓存(geometry buffer, G-buffer)包含较多的语义信息, 能够帮助网络有效地学习场景信息与特征, 从而提升上采样结果的质量. 设计一个基于深度神经网络的低分辨率渲染内容的超分方法. 除了当前帧的颜色图像, 其使用高分辨率的几何缓存来辅助计算并重建超分后的内容细节. 所提方法引入一种新的策略来融合高清缓存与低清图像的特征信息, 在特定的融合模块中对不同种特征信息进行多尺度融合. 实验验证所提出的融合策略和模块的有效性, 并且, 在和其他图像超分辨率方法的对比中, 所提方法体现出明显的优势, 尤其是在高清细节保持方面.
    优先出版日期:  2023-08-09 , DOI: 10.13328/j.cnki.jos.006922
    [摘要] (136) [HTML] (0) [PDF 5.92 M] (412)
    摘要:
    SMT求解器作为重要的基础软件, 其存在的缺陷可能会导致依赖于它的软件功能失效, 甚至带来安全事故. 然而, 修复SMT求解器缺陷是一个十分耗时的任务, 因为开发者需要花费大量的时间和精力来理解并找到缺陷的根本原因. 虽然已有许多软件缺陷定位方面的研究, 但尚未有系统的工作研究如何自动定位SMT求解器缺陷. 因此, 提出一种基于多源频谱的SMT求解器缺陷定位方法SMTLOC. 首先, 对于给定的SMT求解器缺陷, SMTLOC提出一种枚举算法, 用以对触发该缺陷的公式进行变异, 从而生成一组不触发缺陷, 但与触发缺陷的公式具有相似执行路径的证人公式. 然后, SMTLOC根据证人公式的执行路径以及SMT求解器的源码信息, 提出一种融合覆盖频谱和历史频谱的文件可疑度计算方法, 从而定位可能存在缺陷的文件. 为了验证SMTLOC的有效性, 收集60个SMT求解器缺陷. 实验结果表明, SMTLOC的缺陷定位效果明显优于传统的频谱缺陷定位方法, SMTLOC可以将46.67%的缺陷定位在TOP-5的文件内, 定位效果提升了133.33%.
    优先出版日期:  2023-08-09 , DOI: 10.13328/j.cnki.jos.006905
    [摘要] (257) [HTML] (0) [PDF 8.65 M] (427)
    摘要:
    机器学习方法可很好地与软件测试相结合, 增强测试效果, 但少有学者将其运用于测试数据生成方面. 为进一步提高测试数据生成效率, 提出一种结合SVM (support vector machine)和XGBoost (extreme gradient boosting)的链式模型, 并基于此模型借助遗传算法实现多路径测试数据生成. 首先, 利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost), 通过子模型的预测精度值筛选最优子模型, 并根据路径节点顺序将其依次链接, 形成一个链式模型C-SVMXGBoost (chained SVM and XGBoost). 在利用遗传算法生成测试用例时, 使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径), 寻找预测路径与目标路径相似的路径集, 对存在相似路径集的预测路径进行插桩验证, 获取精确路径, 计算适应度值. 在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用, 生成覆盖目标路径的测试数据. 最后, 保留进化生成中产生的适应度较高的个体, 更新链式模型C-SVMXGBoost, 进一步提高测试效率. 实验表明, C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题, 可提高测试效率. 并且通过与已有经典方法相比, 所提方法在覆盖率上提高可达15%, 平均进化代数也有所降低, 在较大规模程序上其降低百分比可达65%.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006839
    [摘要] (165) [HTML] (0) [PDF 5.75 M] (441)
    摘要:
    混合整数线性规划(MILP)作为一种自动化搜索工具, 被广泛地应用于搜索分组密码的差分、线性、积分等密码性质. 提出一种基于动态选取策略构建MILP模型的新技术, 该技术在不同的条件下采用不同的约束不等式刻画密码性质的传播. 具体地, 从可分性出发根据输入可分性汉明重量的不同, 分别采用不同的方法构建线性层可分性传播的MILP模型. 最后, 将该技术应用于搜索uBlock和Saturnin算法的积分区分器. 实验结果表明: 对于uBlock128算法, 该技术可以搜索到比之前最优区分器多32个平衡比特的8轮积分区分器. 除此之外, 搜索到uBlock128和uBlock256算法比之前最优区分器更长一轮的9和10轮积分区分器. 对于Saturnin256算法, 同样搜索到比之前最优区分器更长一轮的9轮积分区分器.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006840
    [摘要] (133) [HTML] (0) [PDF 7.71 M] (448)
    摘要:
    层次主题模型是构建主题层次的重要工具. 现有的层次主题模型大多通过在主题模型中引入nCRP构造方法, 为文档主题提供树形结构的先验分布, 但无法生成具有明确领域涵义的主题层次结构, 即领域主题层次. 同时, 领域主题不仅存在层次关系, 而且不同父主题下的子主题之间还存在子领域方面共享的关联关系, 在现有主题关系研究中没有合适的模型来生成这种领域主题层次. 为了从领域文本中自动、有效地挖掘出领域主题的层次关系和关联关系, 在4个方面进行创新研究. 首先, 通过主题共享机制改进nCRP构造方法, 提出nCRP+层次构造方法, 为主题模型中的主题提供具有分层主题方面共享的树形先验分布; 其次, 结合nCRP+和HDP模型构建重分层的Dirichlet过程, 提出rHDP (reallocated hierarchical Dirichlet processes)层次主题模型; 第三, 结合领域分类信息、词语语义和主题词的领域代表性, 定义领域知识, 包括基于投票机制的领域隶属度、词语与领域主题的语义相关度和层次化的主题-词语贡献度; 最后, 通过领域知识改进rHDP主题模型中领域主题和主题词的分配过程, 提出结合领域知识的层次主题模型rHDP_DK (rHDP with domain knowledge), 并改进采样过程. 实验结果表明, 基于nCRP+的层次主题模型在评价指标方面均优于基于nCRP的层次主题模型(hLDA, nHDP)和神经主题模型(TSNTM); 通过rHDP_DK模型生成的主题层次结构具有领域主题层次清晰、关联子主题的主题词领域差异明确的特点. 此外, 该模型将为领域主题层次提供一个通用的自动挖掘框架.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006841
    [摘要] (119) [HTML] (0) [PDF 3.67 M] (329)
    摘要:
    在多标记学习中, 每个样本都与多个标记关联, 关键任务是如何在构建模型时利用标记之间的相关性. 多标记深度森林算法尝试在深度集成学习的框架下, 使用逐层的表示学习来挖掘标记之间的相关性并利用得到的标记概率表示提升预测精度. 然而, 一方面标记概率表示与标记信息高度相关, 这会导致其多样性较低. 随着深度森林的深度增加, 性能会下降. 另一方面, 标记概率的计算需要我们存储所有层数的森林结构并在测试阶段逐一使用, 这会造成难以承受的计算和存储开销. 针对这些问题, 提出基于交互表示的多标记深度森林算法(interaction representation-based multi-label deep forest, iMLDF). iMLDF从森林模型的决策路径中挖掘特征空间中的结构信息, 利用随机交互树抽取决策树路径中的特征交互, 分别得到特征置信度得分和标记概率分布两种交互表示. iMLDF一方面充分利用模型中的特征结构信息来丰富标记间的相关信息, 另一方面通过交互表达式计算所有的表示, 从而使得算法无需存储森林结构, 大大地提升计算效率. 实验结果表明: 在交互表示基础上进行表示学习的iMLDF算法取得更好的预测性能, 而且针对样本较多的数据集, 计算效率相比于MLDF算法提升了一个数量级.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006842
    [摘要] (131) [HTML] (0) [PDF 7.06 M] (372)
    摘要:
    图划分是分布式图计算中的一项基础工作, 其作用是将大规模图进行划分并分配到集群中的不同机器上. 图划分的质量对分布式图计算的性能有很大的影响, 其目标是降低负载平衡和最小化边割. 如今, 现实中的图数据通常呈动态增长态势, 这就需要一种能够处理动态增量图的划分方法, 在图数据动态增长的过程中确保划分的质量不受影响. 目前虽然有一些动态图划分算法被提出, 但它们不能同时专注于实时处理动态变化和获得高质量的划分结果. 提出基于顶点组重分配的动态增量图划分算法(ED-IDGP)来解决大规模动态增量图的划分问题. 在ED-IDGP算法中, 设计实时处理4种不同单元更新类型的动态处理器, 并在每次处理完单元更新后通过在分区发生动态变化的附近执行局部优化器进一步提高图划分的质量. 在ED-IDGP的局部优化器中, 利用基于改进标签传播算法的顶点组搜索策略搜索顶点组, 并利用提出的顶点组移动增益公式衡量最有益的顶点组, 将该顶点组移动到目标分区中做优化. 在真实数据集上从不同的角度和度量指标评估了ED-IDGP算法的性能和效率.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006843
    [摘要] (198) [HTML] (0) [PDF 3.33 M] (383)
    摘要:
    划分序乘积空间作为一种新的粒计算模型可以从多个视角和多个层次对问题进行描述和求解. 其解空间是由多个问题求解层组成的格结构, 其中每个问题求解层由多个单层次视角构成. 如何在划分序乘积空间中选择问题求解层是一个NP难问题. 为此, 提出一种两阶段自适应遗传算法TSAGA (two stage adaptive genetic algorithm)来寻找问题求解层. 首先, 采用实数编码对问题求解层进行编码, 然后根据问题求解层的分类精度和粒度定义适应度函数. 算法第1阶段基于经典遗传算法, 预选出一些优秀问题求解层作为第2阶段初始种群的一部分, 从而优化解空间. 算法第2阶段, 提出随当前种群进化迭代次数动态变化的自适应选择算子、自适应交叉算子以及自适应大变异算子, 从而在优化的解空间中进一步选择问题求解层. 实验结果证明了所提方法的有效性.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006845
    [摘要] (131) [HTML] (0) [PDF 1.44 M] (451)
    摘要:
    极小不可满足子集(minimal unsatisfiable subsets, MUS)的求解是布尔可满足性问题中的一个重要子问题. 对于一个给定的不可满足问题, 其MUS的求解能够反映出问题中导致其不可满足的关键原因. 然而, MUS的求解是一项极其耗时的任务, 不同的剪枝过程将直接影响到搜索空间的大小、算法的迭代次数, 从而影响算法的求解效率. 提出一种针对MUS求解的加强剪枝策略ABC (accelerating by critical MSS), 依据MSS、MCS、MUS这3者之间的对偶性和碰集关系特点, 提出cMSS和subMUS概念, 并总结出4条性质, 即每个MUS必是subMUS的超集, 进而在避免对MCS的碰集进行求解的情况下有效利用MUS和MCS互为碰集的特征, 有效避免求解碰集时的时间开销. 当subMUS不可满足时则subMUS是唯一的MUS, 算法将提前结束执行; 当subMUS可满足时, 则剪枝掉此节点, 进而有效避免对求解空间中的冗余空间进行搜索. 同时, 通过理论证明ABC策略的有效性, 并将其应用于目前最高效的单一化模型算法MARCO和双模型算法MARCO-MAM, 在标准测试用例下的实验结果表明该策略可以有效地对搜索空间进行进一步剪枝, 从而提高MUS的枚举效率.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006892
    [摘要] (141) [HTML] (0) [PDF 2.33 M] (408)
    摘要:
    委员会共识和混合共识通过选举委员会来代替全网节点完成区块验证, 可有效加快共识速度, 提高吞吐量, 但恶意攻击和收买易导致委员会发生腐败问题, 严重时将影响共识结果甚至造成系统瘫痪. 现有工作虽引入信誉机制降低委员会节点腐败的可能性, 但开销大、可信度低且无法降低腐败问题对系统的影响. 提出一种带有预验证机制的区块链动态共识算法(DBCP), 通过预验证机制在较小开销的前提下对委员会的进行可靠的信誉评估, 及时淘汰委员会中的恶意节点. 若腐败问题已影响到共识结果, DBCP会通过动态共识将区块验证权转移到全网节点, 并淘汰给出错误意见的委员会节点, 避免系统瘫痪. 若委员会通过迭代达到高可信状态, DBCP会将区块验证权交由委员会, 全网节点将认同委员会的共识结果并不再对区块进行验证, 进而加快共识速度. 经实验验证, DBCP的吞吐量较比特币提升两个数量级且与Byzcoin相近, 可在一个出块周期内快速应对委员会腐败问题, 安全性优于Byzcoin.
    优先出版日期:  2023-07-28 , DOI: 10.13328/j.cnki.jos.006837
    [摘要] (148) [HTML] (0) [PDF 6.06 M] (389)
    摘要:
    深度歧义是单帧图像多人3D姿态估计面临的重要挑战, 提取图像上下文对缓解深度歧义极具潜力. 自顶向下方法大多基于人体检测建模关键点关系, 人体包围框粒度粗背景噪声占比较大, 极易导致关键点偏移或误匹配, 还将影响基于人体尺度因子估计绝对深度的可靠性. 自底向上的方法直接检出图像中的人体关键点再逐一恢复3D人体姿态. 虽然能够显式获取场景上下文, 但在相对深度估计方面处于劣势. 提出新的双分支网络, 自顶向下分支基于关键点区域提议提取人体上下文, 自底向上分支基于三维空间提取场景上下文. 提出带噪声抑制的人体上下文提取方法, 通过建模“关键点区域提议”描述人体目标, 建模姿态关联的动态稀疏关键点关系剔除弱连接减少噪声传播. 提出从鸟瞰视角提取场景上下文的方法, 通过建模图像深度特征并映射鸟瞰平面获得三维空间人体位置布局; 设计人体和场景上下文融合网络预测人体绝对深度. 在公开数据集MuPoTS-3D和Human3.6M上的实验结果表明: 较同类先进模型, 所提模型HSC-Pose的相对和绝对3D关键点位置精度至少提高2.2%和0.5%; 平均根关键点位置误差至少降低4.2 mm.
    优先出版日期:  2023-07-26 , DOI: 10.13328/j.cnki.jos.006918
    [摘要] (153) [HTML] (0) [PDF 2.19 M] (334)
    摘要:
    第三方库检测是Android应用安全分析领域的上游任务, 其检测精度对于恶意应用检测、重打包检测、隐私泄露等下游任务有显著影响. 为了提升检测精度和效率, 采用相似性比较的思想, 提出一种基于包结构和签名的第三方库检测方法, 命名为LibPass. LibPass以流水线式模式组合主模块识别、第三方库候选识别和细粒度检测等3个组件. 主模块识别方法区分主程序二进制代码与引入的第三方库二进制代码, 旨在提升方法检测效率. 在此基础上, 提出由第三方库候选识别和细粒度检测构成的两阶段检测方法. 前者利用包结构特征的稳定性来应对应用程序的混淆行为以提升混淆情形下的检测精度, 并利用包结构签名完成快速比对以识别候选第三方库, 达到显著降低成对比较次数、提升检测效率的目的; 后者在前者涮选出的候选中, 通过更细粒度但代价更高的相似性分析精确地识别第三方库及其对应的版本. 为了验证方法的性能和效率, 构建3个评估不同检测能力的基准数据集, 在这些基准数据集上开展实验验证, 从检测性能、检测效率和抗混淆性等方面对实验结果进行深入分析, 结果表明LibPass具备较高的检测精度, 检测效率, 以及应对多种常用混淆操作的能力.
    优先出版日期:  2023-07-26 , DOI: 10.13328/j.cnki.jos.006919
    [摘要] (157) [HTML] (0) [PDF 5.64 M] (537)
    摘要:
    缓冲区溢出等内存错误漏洞的产生往往来自于对内存拷贝类函数的不当使用. 对二进制程序中的内存拷贝类函数进行识别有利于发现内存错误漏洞. 目前针对二进制程序中内存拷贝类函数的识别方法主要借助静态分析来提取函数的特征、控制流、数据流等信息进行识别, 具有较高的误报率和漏报率. 为了提高对内存拷贝类函数识别的效果, 提出一种新颖的基于静态和动态混合分析的技术CPSeeker. 所提方法结合静态分析和动态分析各自的优势, 分阶段对函数的全局静态信息和局部执行信息进行搜集, 对提取到的信息进行融合分析, 进而识别二进制程序中的内存拷贝类函数. 实验结果表明, 尽管CPSeeker在运行时间上有所增加, 但在内存拷贝类函数识别的效果上, 其F1值达到了0.96, 远优于最新的工作BootStomp、SaTC、CPYFinder以及Gemini, 并且不受编译环境(编译器版本、编译器种类、编译器优化等级)的影响. 此外, CPSeeker在真实的固件测试中也具有更好的表现.
    优先出版日期:  2023-07-26 , DOI: 10.13328/j.cnki.jos.006920
    [摘要] (159) [HTML] (0) [PDF 4.08 M] (352)
    摘要:
    基于宽度学习的动态模糊推理系统(broad-learning-based dynamic fuzzy inference system , BL-DFIS)能自动构建出精简的模糊规则并获得良好的分类性能. 然而, 当遇到大型复杂的数据集时, BL-DFIS因会使用较多模糊规则来试图达到令人满意的识别精度, 从而对其可解释性造成了不利影响. 对此, 提出一种兼顾分类性能和可解释性的模糊神经网络, 将其称为特征扩展的随机向量函数链神经网络(FA-RVFLNN). 在该网络中, 一个以原始数据为输入的RVFLNN被作为主体结构, BL-DFIS则用作性能补充, 这意味着FA-RVFLNN包含具有性能增强作用的直接链接. 由于主体结构的增强节点使用Sigmoid激活函数, 因此, 其推理过程可借助一种模糊逻辑算子(I-OR)来解释. 而且, 具有明确含义的原始输入数据也有助于解释主体结构的推理规则. 在直接链接的支撑下, FA-RVFLNN可利用增强节点、特征节点和模糊节点学到更丰富的有用信息. 实验表明: FA-RVFLNN既减缓了主体结构RVFLNN中过多增强节点带来的“规则爆炸”问题, 也提高了性能补充结构BL-DFIS的可解释性(平均模糊规则数降低了50%左右), 在泛化性能和网络规模上仍具有竞争力.
    优先出版日期:  2023-07-26 , DOI: 10.13328/j.cnki.jos.006940
    [摘要] (232) [HTML] (0) [PDF 4.57 M] (367)
    摘要:
    如何提高异构的自然语言查询输入和高度结构化程序语言源代码的匹配准确度, 是代码搜索的一个基本问题. 代码特征的准确提取是提高匹配准确度的关键之一. 代码语句表达的语义不仅与其本身有关, 还与其所处的上下文相关. 代码的结构模型为理解代码功能提供了丰富的上下文信息. 提出一个基于函数功能多重图嵌入的代码搜索方法. 在所提方法中, 使用早期融合的策略, 将代码语句的数据依赖关系融合到控制流图中, 构建函数功能多重图来表示代码. 该多重图通过数据依赖关系显式表达控制流图中缺乏的非直接前驱后继节点的依赖关系, 增强语句节点的上下文信息. 同时, 针对多重图的边的异质性, 采用关系图卷积网络方法从函数多重图中提取代码的特征. 在公开数据集的实验表明, 相比现有基于代码文本和结构模型的方法, 所提方法的MRR提高5%以上. 通过消融实验也表明控制流图较数据依赖图在搜索准确度上贡献较大.
    优先出版日期:  2023-07-12 , DOI: 10.13328/j.cnki.jos.006909
    [摘要] (162) [HTML] (0) [PDF 8.88 M] (427)
    摘要:
    随着触摸设备的普及, 指、笔输入已成为移动办公的一种主流输入方式. 然而现有的应用主要以手指或笔通道中的一种作为输入, 限制了用户的交互空间. 同时, 现有的指-笔混合研究主要关注串行的指-笔分工协作和特定交互任务的并行处理, 并没有系统地考虑并行协作机制和不同通道输入之间的意图关联. 为此, 提出一种面向指-笔混合输入的交互模型; 结合用户指-笔协作的行为习惯定义指-笔混合交互原语, 拓展指、笔交互空间; 继而利用部分可观察马尔可夫决策过程提出基于时序信息的指-笔混合输入意图提取方法, 用以增量式地提取多义性交互原语的交互意图. 最后通过一个用户实验说明指-笔混合输入的优势.
    优先出版日期:  2023-07-12 , DOI: 10.13328/j.cnki.jos.006910
    [摘要] (162) [HTML] (0) [PDF 4.21 M] (730)
    摘要:
    代码搜索是当下自然语言处理和软件工程交叉领域的一个重要分支. 开发高效的代码搜索算法能够显著提高代码重用的能力, 从而有效提高软件开发人员的工作效率. 代码搜索任务是以描述代码片段功能的自然语言作为输入, 在海量代码库中搜索得到相关代码片段的过程. 基于序列模型的代码搜索方法DeepCS虽然取得了很好的效果, 但这种方法不能捕捉代码的深层语义. 基于图嵌入的代码搜索方法GraphSearchNet能缓解这个问题, 但没有对代码与文本进行细粒度匹配, 也忽视了代码图和文本图的全局关系. 为了解决以上局限性, 提出基于关系图卷积网络的代码搜索方法, 对构建的文本图和代码图编码, 从节点层面对文本查询和代码片段进行细粒度匹配, 并应用神经张量网络捕捉它们的全局关系. 在两个公开数据集上的实验结果表明, 所提方法比先进的基线模型DeepCS和GraphSearchNet搜索精度更高.
    优先出版日期:  2023-07-05 , DOI: 10.13328/j.cnki.jos.006901
    [摘要] (325) [HTML] (0) [PDF 1.29 M] (761)
    摘要:
    混合事务与分析处理数据库系统(HTAP)因其在一套系统上可以同时处理混合负载而逐渐获得大众认可. 为了不影响在线事务处理(OLTP)业务的写入性能, HTAP数据库系统往往会通过维护数据多版本或额外副本的方式来支持在线分析处理(OLAP)任务, 从而引入了TP/AP端版本的数据一致性问题. 同时, HTAP数据库系统面临资源隔离下实现高效数据共享的核心挑战, 且数据共享模型的设计综合权衡了业务对性能和数据新鲜度之间的要求. 因此, 为了系统地阐释现有HTAP数据库系统数据共享模型及优化策略, 首先根据TP生成版本与AP查询版本的差异, 通过一致性模型定义数据共享模型, 将HTAP数据共享的一致性模型分为3类, 分别为线性一致性, 顺序一致性与会话一致性. 然后, 梳理数据共享模型的全流程, 即从数据版本标识号分配, 数据版本同步, 数据版本追踪3个核心问题出发, 给出不同一致性模型的实现方法. 进一步, 以典型的HTAP数据库系统为例对具体实现进行深入的阐释. 最后, 针对数据共享过程中涉及的版本同步、追踪、回收等模块的优化策略进行归纳和分析, 并展望数据共享模型的优化方向, 指出数据同步范围自适应, 数据同步周期自调优和顺序一致性的新鲜度阈值约束控制是提高HTAP数据库系统性能和新鲜度的可能手段.
    优先出版日期:  2023-07-05 , DOI: 10.13328/j.cnki.jos.006812
    [摘要] (499) [HTML] (0) [PDF 8.34 M] (640)
    摘要:
    安全缺陷报告可以描述软件产品中的安全关键漏洞. 为了消除软件产品的安全攻击风险, 安全缺陷报告(security bug report, SBR)预测越来越受到研究人员的关注. 但在实际软件开发场景中, 需要进行软件安全漏洞预测的项目可能是来自新公司或属于新启动的项目, 没有足够的已标记安全缺陷报告供在实践中构建此软件安全漏洞预测模型. 一种简单的解决方案就是使用迁移模型, 即利用其他项目已经标记过的数据来构建预测模型. 受到该领域最近的两项研究工作的启发, 以安全关键字过滤为思路提出一种融合知识图谱的跨项目安全缺陷报告预测方法KG-SBRP (knowledge graph of security bug report prediction). 使用安全缺陷报告中的文本信息域结合CWE (common weakness enumeration)与CVE Details (common vulnerabilities and exposures)共同构建三元组规则实体, 以三元组规则实体构建安全漏洞知识图谱, 在图谱中结合实体及其关系识别安全缺陷报告. 将数据分为训练集和测试集进行模型拟合和性能评估. 所构建的模型在7个不同规模的安全缺陷报告数据集上展开实证研究, 研究结果表明, 所提方法与当前主流方法FARSEC和Keyword matrix相比, 在跨项目安全缺陷报告预测场景下, 性能指标F1-score值可以平均提高11%, 除此之外, 在项目内安全缺陷报告预测场景下, F1-score值同样可以平均提高30%.
    优先出版日期:  2023-07-05 , DOI: 10.13328/j.cnki.jos.006906
    [摘要] (210) [HTML] (0) [PDF 2.92 M] (533)
    摘要:
    软件产品线测试是一项非常具有挑战性的工作. 基于相似性的测试方法通过提升测试集的多样性以达到提高测试覆盖率和缺陷检测率的目的. 因其具有良好的可拓展性和较好的测试效果, 目前已成为软件产品线测试的重要手段之一. 在该测试方法中, 如何产生多样化的测试用例和如何维护测试集的多样性是两个关键问题. 针对以上问题, 提出一种基于多样性可满足性(SAT)求解器和新颖性搜索(novelty search, NS)的软件产品线测试算法. 具体地, 所提算法同时采用两类多样性SAT求解器产生多样化的测试用例. 特别地, 为了改善随机局部搜索SAT求解器的多样性, 提出一种基于概率向量的通用策略产生候选解. 此外, 为同时维护测试集的全局和局部多样性, 设计并运用两种基于NS算法思想的归档策略. 在50个真实软件产品线上的消融和对比实验验证多样性SAT求解器和两种归档策略的有效性, 以及所提算法较其他主流算法的优越性.
    优先出版日期:  2023-07-05 , DOI: 10.13328/j.cnki.jos.006907
    [摘要] (223) [HTML] (0) [PDF 5.34 M] (522)
    摘要:
    BPEL (business?process?execution language)是一种可执行的Web服务组合语言. 与传统程序相比, BPEL程序在编程模型、执行方式等方面存在较大差异. 这些新特点使得如何定位并修改测试阶段发现的BPEL程序故障成为挑战, 面向传统软件的故障修复技术难以直接应用于BPEL程序. 从变异分析角度出发, 提出一种基于模板匹配的BPEL程序故障修复方法BPELRepair. 为了克服基于变异分析的故障修复技术计算开销高的缺点, 从补丁生成、测试用例选择以及终止条件3个角度提出多种优化策略. 开发一个BPEL故障修复支持工具, 提高故障修复的自动化程度与效率. 采用经验研究的方式, 评估所提故障修复技术及优化策略的有效性. 实验结果表明, 所提故障修复方法能够成功修复约53%的BPEL程序故障; 所提优化策略能够显著降低搜索匹配、补丁程序验证、测试用例执行与故障修复等方面的开销.
    优先出版日期:  2023-07-04 , DOI: 10.13328/j.cnki.jos.006836
    [摘要] (234) [HTML] (0) [PDF 8.28 M] (425)
    摘要:
    以深度神经网络(deep neural networks, DNN)为基础构建的自动驾驶软件已成为最常见的自动驾驶软件解决方案. 与传统软件一样, DNN也会产生不正确输出或意想不到的行为, 基于DNN的自动驾驶软件已经导致多起严重事故, 严重威胁生命和财产安全. 如何有效测试基于DNN的自动驾驶软件已成为亟需解决的问题. 由于DNN的行为难以预测和被人类理解, 传统的软件测试方法难以适用. 现有的自动驾驶软件测试方法通常对原始图片加入像素级的扰动或对图片整体进行修改来生成测试数据, 所生成的测试数据通常与现实世界差异较大, 所进行扰动的方式也难以被人类理解. 为解决上述问题, 提出测试数据生成方法IATG (interpretability analysis-based test data generation), 使用DNN的解释方法获取自动驾驶软件所做出决策的视觉解释, 选择原始图像中对决策产生重要影响的物体, 通过将其替换为语义相同的其他物体来生成测试数据, 使生成的测试数据更加接近真实图像, 其过程也更易于理解. 转向角预测模型是自动驾驶软件决策模块重要组成部分, 以此类模型为例进行实验, 结果表明解释方法的引入有效增强IATG对转向角预测模型的误导能力. 此外, 在误导角度相同时IATG所生成测试数据比DeepTest更加接近真实图像; 与semSensFuzz相比, IATG具有更高误导能力, 且IATG中基于解释分析的重要物体选择技术可有效提高semSensFuzz的误导能力.
    优先出版日期:  2023-06-28 , DOI: 10.13328/j.cnki.jos.006899
    [摘要] (271) [HTML] (0) [PDF 1.64 M] (517)
    摘要:
    知识空间理论使用数学语言对学习者进行知识评价与学习指导, 属于数学心理学的研究范畴. 技能与问题是构成知识空间的两个基本要素, 深入研究两者之间的关系是知识状态刻画与知识结构分析的内在要求. 在当前的知识空间理论研究中, 没有明确建立技能与问题之间的双向映射, 从而难以提出直观概念意义下的知识结构分析模型, 也没有明确建立知识状态之间的偏序关系, 不利于刻画知识状态之间的差异, 更不利于规划学习者未来的学习路径. 此外, 现有的成果主要集中在经典的知识空间, 没有考虑实际问题中数据的不确定性. 为此, 将形式概念分析与模糊集引入知识空间理论, 建立面向知识结构分析的模糊概念格模型. 具体地, 分别建立知识空间与闭包空间的模糊概念格模型. 首先, 建立知识空间模糊概念格, 并通过任意两个概念的上确界证明所有概念的外延构成知识空间. 引入粒描述的思想定义技能诱导的问题原子粒, 由问题原子粒的组合判定一个问题组合是否是知识空间中的一个状态, 进而提出由问题组合获取知识空间模糊概念的方法. 其次, 建立闭包空间模糊概念格, 并通过任意两个概念的下确界证明所有概念的外延构成闭包空间. 类似地, 定义问题诱导的技能原子粒, 由技能原子粒的组合判定一个技能组合是否是闭包空间中某一知识状态所需的技能, 进而提出由技能组合获取闭包空间模糊概念的方法. 最后, 通过实验分析问题数量、技能数量、填充因子以及分析尺度对知识空间与闭包空间规模的影响. 结论表明知识空间模糊概念不同于现有的任何概念, 也不能从其他概念派生而来. 闭包空间模糊概念本质上是一种面向属性单边模糊概念. 在二值技能形式背景中, 知识空间与闭包空间中的状态具有一一对应关系, 但这种关系在模糊技能形式背景中并不成立.
    优先出版日期:  2023-06-28 , DOI: 10.13328/j.cnki.jos.006900
    [摘要] (412) [HTML] (0) [PDF 2.09 M] (804)
    摘要:
    日志是计算机系统中记录事件状态信息的的重要载体, 日志系统负责计算机系统的日志生成、收集和输出. OpenHarmony是新兴的、面向全设备、全场景的开源操作系统. 在所述工作之前, 包括日志系统在内OpenHarmony有许多关键子系统尚未构建, 而OpenHarmony的开源特性使第三方开发者可以为其贡献核心代码. 为了解决OpenHarmony日志系统缺乏的问题, 主要开展如下工作: ① 分析当今主流日志系统的技术架构和优缺点; ② 基于OpenHarmony操作系统的异构设备互联特性设计HiLog日志系统模型规范; ③ 设计并实现第1个面向OpenHarmony的日志系统HiLog, 并贡献到OpenHarmony主线; ④ 对HiLog日志系统的关键指标进行测试和对比试验. 实验数据表明, 在基础性能方面, HiLog和Log的日志写入阶段吞吐量分别为1 500 KB/s和700 KB/s, 相比Android日志系统吞吐量提升114%; 在日志持久化方面, HiLog可以3.5%的压缩率进行持久化, 并且丢包率小于6‰, 远低于Log. 此外, HiLog还具备数据安全、流量控制等新型实用能力.
    优先出版日期:  2023-06-28 , DOI: 10.13328/j.cnki.jos.006895
    [摘要] (306) [HTML] (0) [PDF 13.47 M] (613)
    摘要:
    视网膜层边界的形态变化是眼部视网膜疾病出现的重要标志, 光学相干断层扫描(optical coherence tomography, OCT)图像可以捕捉其细微变化, 基于OCT图像的视网膜层边界分割能够辅助相关疾病的临床判断. 在OCT图像中, 由于视网膜层边界的形态变化多样, 其中与边界相关的关键信息如上下文信息和显著性边界信息等对层边界的判断和分割至关重要. 然而已有分割方法缺乏对以上信息的考虑, 导致边界不完整和不连续. 针对以上问题, 提出一种“由粗到细”的基于端到端深度神经网络和图搜索(graph search, GS)的OCT图像视网膜层边界分割方法, 避免了非端到端方法中普遍存在的“断层”现象. 在粗分割阶段, 提出一种端到端的深度神经网络—注意力全局残差网络(attention global residual network, AGR-Net), 以更充分和有效的方式提取上述关键信息. 具体地, 首先设计一个全局特征模块(global feature module, GFM), 通过从图像的4个方向扫描以捕获OCT图像的全局上下文信息; 其次, 进一步将通道注意力模块(channel attention module, CAM)与全局特征模块串行组合并嵌入到主干网络中, 以实现视网膜层及其边界的上下文信息的显著性建模, 有效解决OCT图像中由于视网膜层形变和信息提取不充分所导致的误分割问题. 在细分割阶段, 采用图搜索算法去除AGR-Net粗分割结果中的孤立区域或和孔洞等, 保持边界的固定拓扑结构和连续平滑, 以实现整体分割结果的进一步优化, 为医学临床的诊断提供更完整的参考. 最后, 在两个公开数据集上从不同的角度对所提出的方法进行性能评估, 并与最新方法进行比较. 对比实验结果也表明所提方法在分割精度和稳定性方面均优于现有方法.
    优先出版日期:  2023-06-28 , DOI: 10.13328/j.cnki.jos.006893
    [摘要] (216) [HTML] (0) [PDF 3.27 M] (442)
    摘要:
    深度神经网络在许多领域中取得了显著的成果, 但相关研究结果表明, 深度神经网络很容易受到对抗样本的影响. 基于梯度的攻击是一种流行的对抗攻击, 引起了人们的广泛关注. 研究基于梯度的对抗攻击与常微分方程数值解法之间的关系, 并提出一种新的基于常微分方程数值解法-龙格库塔法的对抗攻击方法. 根据龙格库塔法中的预测思想, 首先在原始样本中添加扰动构建预测样本, 然后将损失函数对于原始输入样本和预测样本的梯度信息进行线性组合, 以确定生成对抗样本中需要添加的扰动. 不同于已有的方法, 所提出的方法借助于龙格库塔法中的预测思想来获取未来的梯度信息(即损失函数对于预测样本的梯度), 并将其用于确定所要添加的对抗扰动. 该对抗攻击具有良好的可扩展性, 可以非常容易地集成到现有的所有基于梯度的攻击方法. 大量的实验结果表明, 相比于现有的先进方法, 所提出的方法可以达到更高的攻击成功率和更好的迁移性.
    优先出版日期:  2023-06-28 , DOI: 10.13328/j.cnki.jos.006829
    [摘要] (227) [HTML] (0) [PDF 2.05 M] (509)
    摘要:
    现如今, 深度神经网络在各个领域取得了广泛的应用. 然而研究表明, 深度神经网络容易受到对抗样本的攻击, 严重威胁着深度神经网络的应用和发展. 现有的对抗防御方法大多需要以牺牲部分原始分类精度为代价, 且强依赖于已有生成的对抗样本所提供的信息, 无法兼顾防御的效力与效率. 因此基于流形学习, 从特征空间的角度提出可攻击空间对抗样本成因假设, 并据此提出一种陷阱式集成对抗防御网络Trap-Net. Trap-Net在原始模型的基础上向训练数据添加陷阱类数据, 使用陷阱式平滑损失函数建立目标数据类别与陷阱数据类别间的诱导关系以生成陷阱式网络. 针对原始分类精度损失问题, 利用集成学习的方式集成多个陷阱式网络以在不损失原始分类精度的同时, 扩大陷阱类标签于特征空间所定义的靶标可攻击空间. 最终, Trap-Net通过探测输入数据是否命中靶标可攻击空间以判断数据是否为对抗样本. 基于MNIST、K-MNIST、F-MNIST、CIFAR-10和CIFAR-100数据集的实验表明, Trap-Net可在不损失干净样本分类精确度的同时具有很强的对抗样本防御泛化性, 且实验结果验证可攻击空间对抗成因假设. 在低扰动的白盒攻击场景中, Trap-Net对对抗样本的探测率高达85%以上. 在高扰动的白盒攻击和黑盒攻击场景中, Trap-Net对对抗样本的探测率几乎高达100%. 与其他探测式对抗防御方法相比, Trap-Net对白盒和黑盒对抗攻击皆有很强的防御效力. 为对抗环境下深度神经网络提供一种高效的鲁棒性优化方法.
    优先出版日期:  2023-06-28 , DOI: 10.13328/j.cnki.jos.006830
    [摘要] (348) [HTML] (0) [PDF 4.73 M] (510)
    摘要:
    动态内存分配器是现代应用程序重要组成部分, 它负责管理空闲内存并处理用户内存请求. 现代通用动态内存分配器能够提供较为平衡的性能与内存利用率, 但考虑到不同应用场景的内存使用情况和优化目标不同, 使用通用内存分配器并非最优解. 针对应用场景定制的专用内存分配器通常能够更好地满足系统需要, 然而编写专用内存分配器较为费时, 也容易出错. 开发者通常使用内存分配框架搭建专用动态内存分配器. 然而, 现有的内存分配框架存在抽象能力较差, 组合性与定制性不足的问题. 为此, 从函数式编程视角审视动态内存分配过程, 基于函数可组合性提出了一种可组合的定制化动态内存分配器框架榫卯. 榫卯框架将系统内存分配抽象为多个互不耦合的内存分配层级函数的组合, 这些层级函数能够扩展出策略槽, 以提供更高的定制性和组合性. 榫卯框架基于标准C实现, 依赖C预处理器的元编程特性实现层级函数组合的零性能开销. 开发者能够通过组合与定制分配器的层级函数, 快速构建出适合应用场景的内存分配器. 为了证明榫卯框架的有效性, 使用榫卯框架构建了3种不同的内存分配器实例: tlsfcc, hslab与wfslab, 其中tlsfcc针对多核嵌入式应用场景, 通过替换同步策略优化并发吞吐率; hslab是核心感知的slab式分配器, 通过定制线程缓存优化在异构硬件的性能; wfslab是低延迟的无等待/无锁分配器. 为了评估这3种内存分配器实例, 通过运行基准测试对比现有内存分配器. 实验分别在8核x86/64平台和8核异构aarch64嵌入式平台进行. 实验表明tlsfcc与原始tlsf分配器相比, 在上述两个平台上分别取得了平均1.76和1.59的加速比; 对比hslab与类似架构的tcmalloc, 它在两个平台的平均执行时间仅为tcmalloc的69.6%和85.0%; wfslab则取得了参与实验对比的内存分配器中最小的最差情况内存请求延迟, 其中包括目前最先进的无锁内存分配器mimalloc和snmalloc.
    优先出版日期:  2023-06-14 , DOI: 10.13328/j.cnki.jos.006831
    [摘要] (199) [HTML] (0) [PDF 1.14 M] (473)
    摘要:
    口语理解(spoken language understanding, SLU)是面向任务的对话系统的核心组成部分, 其旨在提取用户查询的语义框架. 在对话系统中, 口语理解组件(SLU)负责识别用户的请求, 并创建总结用户需求的语义框架, SLU通常包括两个子任务: 意图检测(intent detection, ID)和槽位填充(slot filling, SF). 意图检测是一个语义话语分类问题, 在句子层面分析话语的语义; 槽位填充是一个序列标注任务, 在词级层面分析话语的语义. 由于意图和槽之间的密切相关性, 主流的工作采用联合模型来利用跨任务的共享知识. 但是ID和SF是两个具有强相关性的不同任务, 它们分别表征了话语的句级语义信息和词级信息, 这意味着两个任务的信息是异构的, 同时具有不同的粒度. 提出一种用于联合意图检测和槽位填充的异构交互结构, 采用自注意力和图注意力网络的联合形式充分地捕捉两个相关任务中异构信息的句级语义信息和词级信息之间的关系. 不同于普通的同构结构, 所提模型是一个包含不同类型节点和连接的异构图架构, 因为异构图涉及到更全面的信息和丰富的语义, 同时可以更好地交互表征不同粒度节点之间的信息. 此外, 为了更好地适应槽标签的局部连续性, 利用窗口机制来准确地表示词级嵌入表示. 同时结合预训练模型(BERT), 分析所提出模型应用预训练模型的效果. 所提模型在两个公共数据集上的实验结果表明, 所提模型在意图检测任务上准确率分别达到了97.98%和99.11%, 在槽位填充任务上F1分数分别达到96.10%和96.11%, 均优于目前主流的方法.
    优先出版日期:  2023-06-14 , DOI: 10.13328/j.cnki.jos.006833
    [摘要] (418) [HTML] (0) [PDF 2.77 M] (717)
    摘要:
    近年来, RGB-D显著性检测方法凭借深度图中丰富的几何结构和空间位置信息, 取得了比RGB显著性检测模型更好的性能, 受到学术界高度关注. 然而, 现有的RGB-D检测模型仍面临着持续提升检测性能的需求. 最近兴起的Transformer擅长建模全局信息, 而卷积神经网络(CNN)擅长于提取局部细节. 因此, 如何有效结合CNN和Transformer两者的优势, 挖掘全局和局部信息, 将有助于提升显著性目标检测的精度. 为此, 提出一种基于跨模态交互融合与全局感知的RGB-D显著性目标检测方法, 通过将Transformer网络嵌入U-Net中, 从而将全局注意力机制与局部卷积结合在一起, 能够更好地对特征进行提取. 首先借助U-Net编码-解码结构, 高效地提取多层次互补特征并逐级解码生成显著特征图. 然后, 使用Transformer模块学习高级特征间的全局依赖关系增强特征表示, 并针对输入采用渐进上采样融合策略以减少噪声信息的引入. 其次, 为了减轻低质量深度图带来的负面影响, 设计一个跨模态交互融合模块实现跨模态特征融合. 最后, 5个基准数据集上的实验结果表明, 所提算法与其他最新的算法相比具有显著优势.
    优先出版日期:  2023-06-14 , DOI: 10.13328/j.cnki.jos.006825
    [摘要] (209) [HTML] (0) [PDF 5.59 M] (459)
    摘要:
    社会法则是在多Agent系统中为确立某种目标属性而对各个Agent实施的行为限制集合. 在Agent具有“个体理性”及“私有信息”的“策略情况”下, 社会法则合成问题不应建模成通常的优化问题, 而应建模成算法机制设计问题. “最小化副作用”经常是社会法则需要满足的基本要求. 从博弈论的角度来看, 最小化副作用与“最大化社会福利”的概念紧密相关, 可以将“最小化副作用的社会法则合成”建模为一种效率机制设计问题. 不仅需要为给定目标属性找到有效且社会福利最大的社会法则, 还需要向Agent支付适当的金额, 以实现激励相容性和个体理性. 首先基于VCG机制设计一种名叫VCG-SLM的效率机制, 证明它可满足所有必需的形式属性. 然而, 由于发现可证明该机制的计算是一个FPNP-完全问题, 针对性地提出该机制的一种基于整数规划的实现方式VCG-SLM-ILP, 基于ATL语义将分配及支付的计算转化为整数规划, 并严格地证明其正确性, 从而可有效利用目前已非常成熟的工业级整数规划求解器, 成功解决棘手的机制计算问题.
    优先出版日期:  2023-06-14 , DOI: 10.13328/j.cnki.jos.006819
    [摘要] (286) [HTML] (0) [PDF 3.84 M] (625)
    摘要:
    联邦学习作为解决数据孤岛问题的有效方法, 在服务器计算全部梯度的过程中, 由于服务器的惰性和自利性会存在全局梯度不正确计算问题, 因此需要验证全局梯度的完整性. 现有的基于密码算法的方案验证开销过大. 针对这些问题, 提出一种理性与可验证的联邦学习框架. 首先, 结合博弈论, 设计囚徒合约与背叛合约迫使服务器诚实. 其次, 所提方案使用基于复制的验证方案实现全局梯度的完整性验证, 且支持客户端离线. 最后, 经分析证明所提方案的正确性, 并经实验表明, 该方案与已有的验证算法相比, 客户端的计算开销降为零, 一次迭代的通信轮数由原来的3轮优化到2轮, 且训练开销与客户端的离线率成反比.
    优先出版日期:  2023-06-14 , DOI: 10.13328/j.cnki.jos.006896
    [摘要] (357) [HTML] (0) [PDF 10.38 M] (685)
    摘要:
    异构众核架构具有超高的能效比, 已成为超级计算机体系结构的重要发展方向. 然而, 异构系统的复杂性给应用开发和优化提出了更高要求, 其在发展过程中面临好用性和可编程性等众多技术挑战. 我国自主研制的神威新一代超级计算机采用了国产申威异构众核处理器SW26010Pro. 为了发挥新一代众核处理器的性能优势, 支撑新兴科学计算应用的开发和优化, 设计并实现面向SW26010Pro平台的优化编译器swLLVM. 该编译器支持Athread和SDAA双模态异构编程模型, 提供多级存储层次描述及向量操作扩展, 并且针对SW26010Pro架构特点实现控制流向量化、基于代价的节点合并以及针对多级存储层次的编译优化. 测试结果表明, 所设计并实现的编译优化效果显著, 其中, 控制流向量化和节点合并优化的平均加速比分别为1.23和1.11, 而访存相关优化最高可获得2.49倍的性能提升. 最后, 使用SPEC CPU2006标准测试集从多个维度对swLLVM进行了综合评估, 相较于SWGCC的相同优化级别, swLLVM整型课题性能平均下降0.12%, 浮点型课题性能平均提升9.04%, 整体性能平均提升5.25%, 编译速度平均提升79.1%, 代码尺寸平均减少1.15%.
    优先出版日期:  2023-06-07 , DOI: 10.13328/j.cnki.jos.006817
    摘要:
    秩函数法是循环终止性分析的主要方法, 秩函数的存在表明了循环程序是可终止的. 针对单分支线性约束循环程序, 提出一个新的方法对此类循环的终止性进行分析. 基于增函数法向空间的计算, 该方法将原程序空间上的秩函数计算问题归结为其子空间上的秩函数计算问题. 实验表明, 该方法能有效验证现有文献中大部分循环程序的终止性.
    优先出版日期:  2023-06-07 , DOI: 10.13328/j.cnki.jos.006897
    [摘要] (244) [HTML] (0) [PDF 8.45 M] (517)
    摘要:
    多行为推荐系统旨在利用用户多种行为的交互数据来提升系统的推荐性能. 现有的多行为推荐方法通常将多行为数据直接作用于共享的初始化用户表征上, 并在任务中糅合了对用户偏好的挖掘和对不同行为间联系的建模. 然而, 这些算法忽视了不同交互行为中存在的数据不平衡问题(不同行为交互数据量差别较大)以及适配上述两种任务而引起的信息损失问题. 事实上, 用户偏好是指用户在不同行为中表现出来的喜好(例如, 浏览的喜好), 而各行为间的联系表现为用户偏好在不同行为间潜在的转化关系(例如, 浏览转换为购买). 在多行为推荐中, 对用户偏好的挖掘和对行为间联系的建模可以看作两个阶段的任务. 基于上述讨论, 提出基于两阶段学习的多行为推荐. 两阶段策略设计的优势是解耦了前述两种任务. 两阶段策略采取固定参数交替训练的方式实现, 并同时保留了模型端到端的结构. 1)第1阶段专注于不同行为下的用户偏好建模: 先利用所有交互数据(不区分行为类别)对用户的全局喜好进行建模, 以最大程度缓解数据稀疏性问题, 再分别利用各行为的交互数据细化该特定行为下的用户偏好(局部偏好), 以减轻不同行为之间的数据不平衡问题造成的影响. 2)第2阶段专注于对不同行为间联系的建模, 通过解耦对用户偏好的挖掘和对不同行为间联系的建模, 以缓解因适配两种任务而引起的信息损失问题. 这种两阶段模式能够显著提升系统对目标行为的预测能力. 大量实验结果表明, 所提模型在性能上远优于最先进的基线模型, 在Tmall和Beibei两个真实基准数据集上的性能提升平均可以达到103.01%和33.87%.
    优先出版日期:  2023-05-24 , DOI: 10.13328/j.cnki.jos.006894
    [摘要] (266) [HTML] (0) [PDF 2.96 M] (571)
    摘要:
    深度学习在图像、文本、语音等媒体数据的分析任务上取得了优异的性能. 数据增强可以非常有效地提升训练数据的规模以及多样性, 从而提高模型的泛化性. 但是, 对于给定数据集, 设计优异的数据增强策略大量依赖专家经验和领域知识, 而且需要反复尝试, 费时费力. 近年来, 自动化数据增强通过机器自动设计数据增强策略, 已引起了学界和业界的广泛关注. 为了解决现有自动化数据增强算法尚无法在预测准确率和搜索效率之间取得良好平衡的问题, 提出一种基于自引导进化策略的自动化数据增强算法SGES AA. 首先, 设计一种有效的数据增强策略连续化向量表示方法, 并将自动化数据增强问题转换为连续化策略向量的搜索问题. 其次, 提出一种基于自引导进化策略的策略向量搜索方法, 通过引入历史估计梯度信息指导探索点的采样与更新, 在能够有效避免陷入局部最优解的同时, 可提升搜索过程的收敛速度. 在图像、文本以及语音数据集上的大量实验结果表明, 所提算法在不显著增加搜索耗时的情况下, 预测准确率优于或者匹配目前最优的自动化数据增强方法.
    优先出版日期:  2023-05-24 , DOI: 10.13328/j.cnki.jos.006813
    [摘要] (420) [HTML] (0) [PDF 12.20 M] (863)
    摘要:
    从单体系统迁移到微服务系统是当前业界对遗留系统实施再工程化的主流选项之一, 基于单体遗留系统的微服务体系架构重构则是实现该迁移的关键步骤. 目前学界多集中在微服务识别方法的研究上; 业界虽有许多面向微服务架构的遗留系统重构的实践, 但缺乏系统性的方法及高效鲁棒的工具. 鉴于此, 在微服务识别与模型驱动开发方法前期研究的基础上, 研发一种模型驱动的、可用于单体遗留系统微服务化重构的集成设计平台MSA-Lab. 它通过分析单体遗留系统运行日志中的方法调用序列, 对其中的类和数据表进行类型识别和聚类以构造抽象微服务, 同时生成包括微服务图和微服务序列图在内的系统架构设计模型. 它包括用于微服务自动识别与设计模型自动生成的核心部件MSA-Generator, 以及用于微服务静态结构模型与动态行为模型可视化展现、交互式建模、模型语法约束检验的核心部件MSA-Modeller. 在MSA-Lab平台上, 通过对4个开源项目实施有效性、鲁棒性、功能转换完备性等实验以及对3个同类型工具实施性能对比实验; 结果表明: 所提平台拥有很好的有效性、鲁棒性及实现面向日志的功能转换完备性, 且性能更加优越.
    优先出版日期:  2023-05-17 , DOI: 10.13328/j.cnki.jos.006826
    [摘要] (159) [HTML] (0) [PDF 2.77 M] (577)
    摘要:
    近年来, 随着普适计算概念的深入人心, 智能感知技术已成为研究者们关注的焦点, 且基于WiFi的非接触式感知因其优秀的普适性、低廉的部署成本以及良好的用户体验越来越受到学术界和工业界的青睐. 典型的WiFi非接触式感知工作有手势识别、呼吸检测、入侵检测、行为识别等, 这些工作若实际部署, 需首先避免其他无关区域中无关行为的干扰, 因此需要判断目标是否进入到特定的感知区域中. 这意味着系统应具备精准判断目标在界线哪一侧的能力, 然而现有工作没能找到一个可以对某个自由设定的边界进行精确监控的方法, 这阻碍了WiFi感知应用的实际落地. 基于这一关键问题, 从电磁波衍射的物理本质出发, 结合菲涅尔衍射模型(Fresnel diffraction model), 找到一种目标穿越link (收发设备天线的连线)时的信号特征(Rayleigh distribution in Fresnel diffraction model, RFD), 并揭示该信号特征与人体活动之间的数学关系; 之后以link作为边界, 结合天线间距带来的波形时延以及AGC (automatic?gain?control)在link被遮挡时的特征, 通过越线检测实现对边界的监控. 在此基础上, 还实现两个实际应用, 即入侵检测系统和居家状态监测系统, 前者的精确率超过89%、召回率超过91%, 后者的准确率超过89%, 在验证所提边界监控算法的可用性和鲁棒性的同时, 也展示了所提方法与其他WiFi感知技术相结合的巨大潜力, 为WiFi感知技术的实际部署提供思考方向.
    优先出版日期:  2023-05-17 , DOI: 10.13328/j.cnki.jos.006821
    [摘要] (257) [HTML] (0) [PDF 9.43 M] (736)
    摘要:
    因严重遮挡和剧烈形变等挑战长期共存, 精准鲁棒的视频分割已成为计算机视觉的热点之一. 构建联合吸收马尔可夫链和骨架映射的视频分割方法, 经由“预分割—后优化—再提升”逐步递进地生成精准目标轮廓. 预分割阶段, 基于孪生网络和区域生成网络获取目标感兴趣区域, 建立这些区域内超像素的吸收马尔可夫链, 计算出超像素的前景/背景标签. 吸收马尔可夫链可灵活有效的感知和传播目标特征, 能从复杂场景初步预分割出目标物体. 后优化阶段, 设计短期时空线索模型和长期时空线索模型, 以获取目标的短期变化规律和长期稳定特征, 进而优化超像素标签, 降低相似物体和噪声带来的误差. 再提升阶段, 为减少优化结果的边缘毛刺和不连贯, 基于超像素标签和位置, 提出前景骨架和背景骨架的自动生成算法, 并构建基于编解码的骨架映射网络, 以学习出像素级目标轮廓, 最终得到精准视频分割结果. 标准数据集的大量实验表明: 所提方法优于现有主流视频分割方法, 能够产生具有更高区域相似度和轮廓精准度的分割结果.
    优先出版日期:  2023-05-17 , DOI: 10.13328/j.cnki.jos.006814
    [摘要] (372) [HTML] (0) [PDF 5.42 M] (873)
    摘要:
    高效的移动充电调度是构建长生命期、可持续运行的无线可充电传感器网络(WRSN)的关键之一. 现有基于强化学习的充电策略只考虑了移动充电调度问题的一个维度, 即移动充电器(MC)的路径规划, 而忽略了充电调度问题中的另一维度, 即充电时长调整, 因而仍然存在性能限制. 提出一种基于深度强化学习的WRSN动态时空充电调度方法(SCSD), 建立充电序列调度和充电时长动态调整的深度强化学习模型. 针对移动充电调度中离散的充电序列规划和连续的充电时长调整问题, 使用DQN为待充电节点优化充电序列, 并基于DDPG计算并动态调整序列中待充电节点的充电时长. 通过分别从空间和时间两个维度的优化, 在避免节点缺电失效的同时, 所提出的SCSD可实现充电性能的有效提高. 大量仿真实验结果表明, SCSD与现有的几种有代表性的充电方案相比其充电性能具有明显优势.
    优先出版日期:  2023-05-10 , DOI: 10.13328/j.cnki.jos.006815
    [摘要] (362) [HTML] (0) [PDF 2.94 M] (650)
    摘要:
    随着深度学习与隐写技术的发展, 深度神经网络在图像隐写领域的应用越发广泛, 尤其是图像嵌入图像这一新兴的研究方向. 主流的基于深度神经网络的图像嵌入图像隐写方法需要将载体图像和秘密图像一起输入隐写模型生成含密图像, 而最近的研究表明, 隐写模型仅需要秘密图像作为输入, 然后将模型输出的含密扰动添加到载体图像上, 就可完成秘密图像的嵌入过程, 这种新颖的不依赖载体图像的嵌入方式极大地扩展了隐写的应用场景, 实现了隐写的通用性. 但这种新的嵌入方式目前仅验证了秘密图像嵌入和恢复的可行性, 而对隐写更重要的评价标准, 即隐蔽性, 未进行考虑和验证. 提出一种基于注意力机制的高容量通用图像隐写模型USGAN, 利用注意力模块, USGAN的编码器可以在通道维度上对秘密图像中像素位置的扰动强度分布进行调整, 从而减小含密扰动对载体图像的影响. 此外, 利用基于CNN的隐写分析模型作为USGAN的目标模型, 通过与目标模型进行对抗训练促使编码器学习生成含密对抗扰动, 从而让含密图像同时成为攻击隐写分析模型的对抗样本. 实验结果表明, 所提模型不仅可以实现不依赖载体图像的通用嵌入方式, 还进一步提高了隐写的隐蔽性.
    优先出版日期:  2023-05-10 , DOI: 10.13328/j.cnki.jos.006816
    [摘要] (320) [HTML] (0) [PDF 1.63 M] (652)
    摘要:
    大脑如何实现学习以及感知功能对于人工智能和神经科学领域均是一个重要问题. 现有人工神经网络由于结构和计算机制与真实大脑相差较大, 无法直接用于理解真实大脑学习以及处理感知任务的机理. 树突神经元模型是一种对大脑神经元树突信息处理过程进行建模仿真的计算模型, 相比人工神经网络更接近生物真实. 使用树突神经网络模型处理学习感知任务对理解真实大脑的学习过程有重要作用. 然而, 现有基于树突神经元网络的学习模型大都局限于简化树突模型, 无法完整建模树突的信号处理过程. 针对这一问题, 提出一种基于精细中型多棘神经元网络的学习模型, 使得精细神经网络可以通过学习完成相应感知任务. 实验表明, 在经典的图像分类任务上, 所提模型可以达到很好的分类性能. 此外, 精细神经网络对于噪声干扰有很强的鲁棒性. 对网络特性进行进一步分析, 发现学习后网络中的神经元表现出了刺激选择性这种神经科学中的经典现象, 表明所提模型具有一定的生物可解释性, 同时也表明刺激选择特性可能是大脑通过学习完成感知任务的一种重要特性.
    优先出版日期:  2023-05-10 , DOI: 10.13328/j.cnki.jos.006820
    [摘要] (238) [HTML] (0) [PDF 1.45 M] (656)
    摘要:
    大型复杂软件系统的需求分析与生成是一个由上而下逐层分解的过程, 跨层需求间追踪关系的构建对于项目的管理、开发与演化都至关重要. 开源系统的松耦合贡献方式需要每位参与者能便捷地理解需求的来龙去脉及需求状态, 这依赖跨层需求间的追踪. 问题描述日志是开源系统中需求的常见呈现方式, 其无固定模板要求, 内容多样(含文本、代码、调试信息等), 术语使用自由, 跨层需求间抽象层次大, 给自动追踪带来极大挑战. 提出一种面向关键特征维度的相关性反馈方法, 通过静态分析项目代码结构, 抽取代码相关术语及其间的关联强度, 构建代码词汇库, 以缓解跨层需求的抽象层次差距及用语不统一的问题; 通过度量词汇对需求描述的重要性并基于此筛选关键特征维度, 以对查询语句进行针对性的优化, 有效减少需求描述长度、内容形式等方面的噪音. 通过在3个开源系统需求集上针对两个场景的实验, 表明所提方法相比基线方法在跨层需求追踪方面的优越性, 相比VSM、Standard Rocchio和Trace BERT, F2值提升分别达到29.01%、7.75%和59.21%.
    优先出版日期:  2023-05-10 , DOI: 10.13328/j.cnki.jos.006811
    [摘要] (300) [HTML] (0) [PDF 10.89 M] (995)
    摘要:
    BLAS (basic linear algebra subprograms)是最基本、最重要的底层数学库之一. 在一个标准的BLAS库中, BLAS 3级函数涵盖的矩阵-矩阵运算尤为重要, 在许多大规模科学与工程计算应用中被广泛调用. 另外, BLAS 3级属于计算密集型函数, 对充分发挥处理器的计算性能有至关重要的作用. 针对国产SW26010-Pro处理器研究BLAS 3级函数的众核并行优化技术. 具体而言, 根据SW26010-Pro的存储层次结构, 设计多级分块算法, 挖掘矩阵运算的并行性. 在此基础上, 基于远程内存访问 (remote memory access, RMA)机制设计数据共享策略, 提高从核间的数据传输效率. 进一步, 采用三缓冲、参数调优等方法对算法进行全面优化, 隐藏直接内存访问 (direct memory access, DMA)访存开销和RMA通信开销. 此外, 利用SW26010-Pro的两条硬件流水线和若干向量化计算/访存指令, 还对BLAS 3级函数的矩阵-矩阵乘法、矩阵方程组求解、矩阵转置操作等若干运算进行手工汇编优化, 提高了函数的浮点计算效率. 实验结果显示, 所提出的并行优化技术在SW26010-Pro处理器上为BLAS 3级函数带来了明显的性能提升, 单核组BLAS 3级函数的浮点计算性能最高可达峰值性能的92%, 多核组BLAS 3级函数的浮点计算性能最高可达峰值性能的88%.
    优先出版日期:  2023-05-10 , DOI: 10.13328/j.cnki.jos.006824
    [摘要] (265) [HTML] (0) [PDF 7.36 M] (660)
    摘要:
    流程剩余时间预测对于业务异常的预防和干预有着重要的价值和意义. 现有的剩余时间预测方法通过深度学习技术达到了更高的准确率, 然而大多数深度模型结构复杂难以解释预测结果, 即不可解释问题. 此外, 剩余时间预测除了活动这一关键属性还会根据领域知识选择若干其他属性作为预测模型的输入特征, 缺少通用的特征选择方法, 对于预测的准确率和模型的可解释性存在一定影响. 针对上述问题, 提出基于可解释特征分层模型(explainable feature-based hierarchical model, EFH model)的流程剩余时间预测框架. 具体而言, 首先提出特征自选择策略, 通过基于优先级的后向特征删除和基于特征重要性值的前向特征选择, 得到对预测任务具有积极影响的属性作为模型输入. 然后提出可解释特征分层模型架构, 通过逐层加入不同特征得到每层的预测结果, 解释特征值与预测结果的内在联系. 采用LightGBM (light gradient boosting machine)和LSTM (long short-term memory)算法实例化所提方法, 框架是通用的不限于选用算法. 最后在8个真实事件日志上与最新方法进行比较. 实验结果表明所提方法能够选取出有效特征, 提高预测的准确率, 并解释预测结果.
    优先出版日期:  2023-05-10 , DOI: 10.13328/j.cnki.jos.006801
    [摘要] (312) [HTML] (0) [PDF 6.12 M] (736)
    摘要:
    奥林匹克遗产是全人类的宝贵财富, 利用科技与文化艺术相融合, 对实现北京冬奥会及奥林匹克遗产和精神文化的多元呈现和高效传播至关重要. 线上云展厅作为信息时代数字博物馆发展的重要趋势, 虽然在单项数字博物馆与交互系统技术研究方面已具备较好的基础, 但尚未形成体系化、智能化、交互友好的冬奥会奥林匹克数字博物馆系统. 面向北京2022年冬季奥林匹克运动会, 提出一种具有交互反馈的云展厅系统构建方式, 通过构建具有虚拟讲解员的智能交互云展厅, 进一步探索交互反馈在知识传播型的数字博物馆中对于非物质文化遗产的传播作用. 为了探索视听交互反馈对云展厅的奥林匹克精神文化传播的影响, 同时提升知识传播型云展厅中的用户体验, 对32名参与者进行用户实验. 研究结果表明, 所构建的云展厅能够极大地促进奥林匹克文化与精神的传播; 同时, 在云展厅中引入视听交互反馈能够提高用户的感知控制, 从而有效地提升用户体验.
    优先出版日期:  2023-04-26 , DOI: 10.13328/j.cnki.jos.006805
    [摘要] (337) [HTML] (0) [PDF 9.74 M] (819)
    摘要:
    移动边缘计算场景中任务的不确定性增加了任务卸载及资源分配的复杂性和难度. 鉴于此, 提出一种移动边缘计算不确定性任务持续卸载及资源分配方法. 首先, 构建一种移动边缘计算不确定性任务持续卸载模型, 通过基于持续时间片划分的任务多批次处理技术应对任务的不确定性, 并设计多设备计算资源协同机制提升对计算密集型任务的承载能力. 其次, 提出一种基于负载均衡的自适应策略选择算法, 避免计算资源过度分配导致信道拥堵进而产生额外能耗. 最后, 基于泊松分布实现了对不确定任务场景模型的仿真, 大量实验结果表明时间片长度减小能够降低系统总能耗. 此外, 所提算法能够更有效地实现任务卸载及资源分配, 相较于对比算法, 最大可降低能耗11.8%.
    优先出版日期:  2023-04-26 , DOI: 10.13328/j.cnki.jos.006807
    [摘要] (560) [HTML] (0) [PDF 6.17 M] (1324)
    摘要:
    情感对话技术着眼于对话机器人的“情商”, 旨在让对话机器人具有像人类一样观察、理解和表达情感的能力. 这项技术可以看作是情感计算和对话技术的交叉, 兼顾对话机器人的“智商”和“情商”, 从而实现对用户的精神陪伴、情感慰藉和心理疏导. 结合对话中情感的特点, 对情感对话技术进行全面解析: 1)规划对话场景下的情感识别、情感管理、情感表达等3个重要的技术点, 并拓展多模态场景下的情感对话技术. 2)介绍情感对话4项关键技术的最新研究进展, 并总结这些技术面临的主要挑战和可能解决方案. 3)介绍情感对话技术的数据资源. 4)分析情感对话技术的难点, 展望其未来发展方向与前景.
    优先出版日期:  2023-04-26 , DOI: 10.13328/j.cnki.jos.006809
    [摘要] (227) [HTML] (0) [PDF 6.15 M] (673)
    摘要:
    混合云模式下企业业务应用和数据经常跨云流转迁移, 面对多样复杂的云服务环境, 当前大多数混合云应用仅以主体为中心制定数据的访问控制策略并通过人工调整策略, 无法满足数据在全生命周期不同阶段时的细粒度动态访问控制需求. 为此, 提出一种混合云环境下面向数据生命周期的自适应访问控制方法AHCAC. 该方法首先采用基于关键属性的策略描述思想去统一混合云下数据全生命周期的异构策略, 尤其引入“阶段”属性显式标识数据的生命周期状态, 为实现面向数据生命周期的细粒度访问控制提供基础; 其次针对数据生命周期同阶段策略具有相似性和一致性的特点, 定义策略距离, 引入基于策略距离的层次聚类算法实现数据生命周期各阶段对应访问控制策略的构建; 最后通过关键属性匹配实现当数据所处阶段变化时, 触发策略评估引擎上数据对应阶段策略的自适应调整和加载, 最终实现面向数据生命周期的自适应访问控制. 在OpenStack和开源策略评估引擎Balana上通过实验验证了所提方法的有效性和可行性.
    优先出版日期:  2022-12-30 , DOI: 10.13328/j.cnki.jos.006804
    [摘要] (1125) [HTML] (0) [PDF 5.38 M] (1790)
    摘要:
    随机配置网络(stochastic configuration network, SCN)是一种新兴的增量式神经网络模型, 与其他随机化神经网络方法不同, 它能够通过监督机制进行隐含层节点参数配置, 保证了模型的快速收敛性能. 因其具有学习效率高、人为干预程度低和泛化能力强等优点, 自2017年提出以来, SCN吸引了大量国内外学者的研究兴趣, 得到了快速地推广和发展. 从SCN的基础理论、典型算法变体、应用领域以及未来研究方向等方面切入, 全面地概述SCN研究进展. 首先, 从理论的角度分析SCN的算法原理、通用逼近性能及其优点; 其次, 重点研究深度SCN、二维SCN、鲁棒SCN、集成SCN、分布式并行SCN、正则化SCN等典型变体; 随后介绍SCN在硬件实现、计算机视觉、医学数据分析、故障检测与诊断、系统建模预测等不同领域的应用进展; 最后指出SCN在卷积神经网络架构、半监督学习、无监督学习、多视图学习、模糊神经网络、循环神经网络等研究方向的发展潜力.
    优先出版日期:  2017-10-18 , DOI:
    [摘要] (2862) [HTML] (0) [PDF 525.21 K] (4955)
    摘要:
    Data race is a major source of concurrency bugs. Dynamic data race detection tools (e.g., FastTrack) monitor the execu-tions of a program to report data races occurring in runtime. However, such tools incur significant overhead that slows down and perturbs executions. To address the issue, the state-of-the-art dynamic data race detection tools (e.g., LiteRace) ap-ply sampling techniques to selectively monitor memory access-es. Although they reduce overhead, they also miss many data races as confirmed by existing studies. Thus, practitioners face a dilemma on whether to use FastTrack, which detects more data races but is much slower, or LiteRace, which is faster but detects less data races. In this paper, we propose a new sam-pling approach to address the major limitations of current sampling techniques, which ignore the facts that a data race involves two threads and a program under testing is repeatedly executed. We develop a tool called AtexRace to sample memory accesses across both threads and executions. By selectively monitoring the pairs of memory accesses that have not been frequently observed in current and previous executions, AtexRace detects as many data races as FastTrack at a cost as low as LiteRace. We have compared AtexRace against FastTrack and LiteRace on both Parsec benchmark suite and a large-scale real-world MySQL Server with 223 test cases. The experiments confirm that AtexRace can be a replacement of FastTrack and LiteRace.
    优先出版日期:  2017-10-18 , DOI:
    [摘要] (2813) [HTML] (0) [PDF 352.38 K] (6026)
    摘要:
    It is difficult to fix atomicity violations correctly. Existing gate lock algorithm (GLA) simply inserts gate locks to serialize exe-cutions, which may introduce performance bugs and deadlocks. Synthesized context-aware gate locks (by Grail) require complex source code synthesis. We propose ?Fixer to adaptively fix ato-micity violations. It firstly analyses the lock acquisitions of an atomicity violation. Then it either adjusts the existing lock scope or inserts a gate lock. The former addresses cases where some locks are used but fail to provide atomic accesses. For the latter, it infers the visibility (being global or a field of a class/struct) of the gate lock such that the lock only protects related accesses. For both cases, ?Fixer further eliminates new lock orders to avoid introducing deadlocks. Of course, ?Fixer can produce both kinds of fixes on atomicity violations with locks. The experi-mental results on 15 previously used atomicity violations show that: ?Fixer correctly fixed all 15 atomicity violations without introducing deadlocks. However, GLA and Grail both intro-duced 5 deadlocks. HFix (that only targets on fixing certain types of atomicity violations) only fixed 2 atomicity violations and introduced 4 deadlocks. ?Fixer also provides an alternative way to insert gate locks (by inserting gate locks with proper visibility) considering fix acceptance.
    优先出版日期:  2017-09-11 , DOI:
    [摘要] (3322) [HTML] (0) [PDF 276.42 K] (3168)
    摘要:
    对Github上Python科学计算软件生态系统中的跨项目关联缺陷进行了实证分析,聚焦于开发者对缺陷根源的追踪和上下游项目开发者修复缺陷的协作。通过定性和定量的分析,揭示了影响这类缺陷定位与修复的因素,以及开发者应对它们的常见行为。
    优先出版日期:  2017-06-21 , DOI:
    [摘要] (3368) [HTML] (0) [PDF 169.43 K] (3204)
    摘要:
    Numerical instability is a well-known problem that may cause serious runtime failures. This paper discusses the reason of instability in software development process, and presents a toolchain that not only detects the potential instability in software, but also diagnoses the reason for such instability. We classify the reason of instability into two categories. When it is introduced by software requirements, we call the instability caused by problem. In this case, it cannot be avoided by improving software development, but requires inspecting the requirements, especially the underlying mathematical properties. Otherwise, we call the instability caused by practice. We design our toolchain as 4 loosely-coupled tools, which combine stochastic arithmetic with infinite-precision testing. Each tool in our toolchain can be configured with different strategies according to the properties of the analyzed software. We evaluate our toolchain on subjects from literature. The results show that it effectively detects and separates the instabilities caused by problems from others. We also conduct an evaluation on the latest version of GNU Scientific Library, and the toolchain finds a few real bugs in the well-maintained and widely deployed numerical library. With the help of our toolchain, we report the details and fixing advices to the GSL buglist.
    优先出版日期:  2017-06-13 , DOI:
    [摘要] (4571) [HTML] (0) [PDF 174.91 K] (3624)
    摘要:
    Code contributions in Free/Libre and Open Source Software projects are controlled to maintain high-quality of software. Alternatives to patch-based code contribution tools such as mailing lists and issue trackers have been developed with the pull request systems being the most visible and widely available on GitHub. Is the code contribution process more effective with pull request systems? To answer that, we quantify the effectiveness via the rates contributions are accepted and ignored, via the time until the first response and final resolution and via the numbers of contributions. To control for the latent variables, our study includes a project that migrated from an issue tracker to the GitHub pull request system and a comparison between projects using mailing lists and pull request systems. Our results show pull request systems to be associated with reduced review times and larger numbers of contributions. However, not all the comparisons indicate substantially better accept or ignore rates in pull request systems. These variations may be most simply explained by the differences in contribution practices the projects employ and may be less affected by the type of tool. Our results clarify the importance of understanding the role of tools in effective management of the broad network of potential contributors and may lead to strategies and practices making the code contribution more satisfying and efficient from both contributors' and maintainers' perspectives.
    优先出版日期:  2017-01-25 , DOI:
    [摘要] (3453) [HTML] (0) [PDF 254.98 K] (3019)
    摘要:
    Code contributions in Free/Libre and Open Source Software projects are controlled to maintain high-quality of software. Alternatives to patch-based code contribution tools such as mailing lists and issue trackers have been developed with the pull request systems being the most visible and widely available on GitHub. Is the code contribution process more effective with pull request systems? To answer that, we quantify the effectiveness via the rates contributions are accepted and ignored, via the time until the first response and final resolution and via the numbers of contributions. To control for the latent variables, our study includes a project that migrated from an issue tracker to the GitHub pull request system and a comparison between projects using mailing lists and pull request systems. Our results show pull request systems to be associated with reduced review times and larger numbers of contributions. However, not all the comparisons indicate substantially better accept or ignore rates in pull request systems. These variations may be most simply explained by the differences in contribution practices the projects employ and may be less affected by the type of tool. Our results clarify the importance of understanding the role of tools in effective management of the broad network of potential contributors and may lead to strategies and practices making the code contribution more satisfying and efficient from both contributors' and maintainers' perspectives.
    优先出版日期:  2017-01-18 , DOI:
    [摘要] (3910) [HTML] (0) [PDF 472.29 K] (3028)
    摘要:
    Software should behave correctly even in adverse conditions. Particularly, we study the problem of automated validation of crash consistency, i.e., file system data safety when systems crash. Existing work requires non-trivial manual efforts of specifying checking scripts and workloads, which is an obstacle for software developers. Therefore, we propose C3, a novel approach that makes crash consistency validation as easy as pressing a single button. With a program and an input, C3 automatically reports inconsistent crash sites. C3 not only exempts developers from the need of writing crash site checking scripts (by an algorithm that computes editing distance between file system snapshots) but also reduces the reliance on dedicated workloads (by test amplification). We implemented C3 as an open-source tool. With C3, we found 14 bugs in open-source software that have severe consequences at crash and 11 of them were previously unknown to the developers, including in highly mature software (e.g., GNU zip and GNU coreutils sort) and popular ones being actively developed (e.g., Adobe Brackets and TeXstudio).
    优先出版日期:  2017-01-04 , DOI:
    [摘要] (3669) [HTML] (0) [PDF 293.93 K] (2775)
    摘要:
    本文提出了一种可部署的数据竞争动态采样检测技术,首先提出了基于线程本地时序的数据竞争定义,之后基于硬件断点进行采样检测。在采样率为1%时,时间开销约为5%,且有效性得以保证。
    优先出版日期:  2017-01-04 , DOI:
    [摘要] (4024) [HTML] (0) [PDF 244.61 K] (3240)
    摘要:
    在软件开发过程中,软件更新时常发生,怎样保证软件更新后的软件质量呢?这就是回归测试的任务。传统上,回归测试通过检测软件异常行为来保证软件质量。然而,在实践中所有的软件行为不可能全部被检测到,尤其针对于大型的复杂软件系统。为帮助开发人员更好的进行回归测试,传统工作集中在增加测试用例上,即通过人工或自动生成测试输入的方法,观测测试输出以捕获程序行为。这种方法虽一定程度上有效,但也存在很大缺陷:人工编写测试用例费时费力,不能覆盖的代码较多,而且容易受人主观判断的误导(例如忽略某些特别容易存在缺陷的类、方法等);自动生成测试用例技术存在很多问题,例如代价大和无法很好的处理数组、字符串等。基于目前软件测试技术存在的缺陷,很多软件不得不在面临诸多安全威胁的状态下发布,有时甚至造成重大财产损失甚至人员伤亡。因此,我们迫切需要新技术来辅助现有技术以更好的进行回归测试、保障软件质量。
    优先出版日期:  2016-12-12 , DOI:
    [摘要] (3555) [HTML] (0) [PDF 358.69 K] (3183)
    摘要:
    在程序分析中,循环(Loop)的处理与分析是一个非常重要而且很有挑战的任务。例如,在符号执行(Symbolic Execution)中,循环的不断展开会导致程序路径数量指数级地增长。因此,符号执行通常会陷入不停的循环展开,而不能覆盖到新的程序分支上,最终影响了测试用例生成或者缺陷检测的效率。
    优先出版日期:  2016-09-30 , DOI:
    摘要:
    在软件测试中,测试预言是一种判断程序在给定测试输入下的执行结果是否符合预期的机制。测试预言通常由在测试中需要被观测的变量以及这些变量的预期值组成。对于相同的测试输入,不同的测试预言可能有不同的缺陷检测能力。因此,高质量的测试预言对于检测软件中的缺陷是非常必要的。在已有的研究中,虽然研究人员提出了各种各样的自动化测试输入生成技术,但是测试预言问题仍然被公认为是软件测试中最难解决的问题之一。
    优先出版日期:  2016-09-09 , DOI:
    [摘要] (4009) [HTML] (0) [PDF 313.52 K] (191)
    摘要:
    本文基于众测平台,提出了一种基于局部的主动学习方法,能够将众测报告中的缺陷进行自动分类,该方法解决了众测报告分类中的局部偏见问题、及缺少历史训练数据的问题,并基于实际的众测数据进行了验证。
    优先出版日期:  2016-09-07 , DOI:
    [摘要] (4530) [HTML] (0) [PDF 231.98 K] (114)
    摘要:
    并发缺陷是由于某些事件按照一定的顺序发生而导致的,本文提出了一种基于缺陷半径的并发缺陷的概率检测方法RPro,并用于死锁的检测,且有概率保证。实验表明该方法可以显著提高死锁的检测概率。
    优先出版日期:  2016-08-29 , DOI:
    摘要:
    当公司投入资源到开源社区,其诉求可能跟开放共享的开源开发方法存在冲突,继而影响自由贡献者.因此我们研究:公司参与会对开源社区带来怎样的影响?面向三个技术同构的混合项目,我们总结了三个商业参与模型,并量化了不同模型对贡献者稳定性和持续性的影响.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2003,14(7):1282-1291, DOI:
    [摘要] (36984) [HTML] (0) [PDF 832.28 K] (79493)
    摘要:
    集成了传感器、微机电系统和网络三大技术而形成的传感器网络是一种全新的信息获取和处理技术.在简要介绍传感器网络体系结构的基础上,分析和展望了一些有价值的应用领域.结合已有研究,总结并详细阐述了包括低功耗路由技术和介质访问控制方法等在内的热点研究问题.最后,针对应用需求,提出了几点研究设想.
    2010,21(3):427-437, DOI:
    [摘要] (32823) [HTML] (0) [PDF 308.76 K] (38023)
    摘要:
    主要针对宋词这种特殊的汉语诗歌体裁,开展了有关自动生成算法及其实现方法的探索性研究.研究工作主要根据宋词特点,设计了基于平仄的编码方式、基于句法和语义加权值的适应度函数、基于精英主义和轮盘赌算法的选择策略,采用部分映射和启发式交叉算子和启发式变异算子,从而构建了一种基于遗传算法的宋词生成计算模型并进行了系统实现.实验结果表明,所建立的计算模型及其软件系统,初步实现了机器自动生成宋词的目标,对于给定的主题词和词牌,基本上能够自动生成有一定欣赏价值的宋词.论文的工作也填补了我国在汉语诗歌自动生成研究方面的不足.
    2011,22(1):71-83, DOI:10.3724/SP.J.1001.2011.03958
    [摘要] (29729) [HTML] (0) [PDF 781.42 K] (54366)
    摘要:
    云计算代表IT 领域向集约化、规模化与专业化道路发展的趋势,是IT 领域正在发生的深刻变革.但它在提高使用效率的同时,为实现用户信息资产安全与隐私保护带来极大的冲击与挑战.当前,安全成为云计算领域亟待突破的重要问题,其重要性与紧迫性已不容忽视.分析了云计算对信息安全领域中技术、标准、监管等各方面带来的挑战;提出云计算安全参考框架及该框架下的主要研究内容;指出云计算的普及与应用是近年来信息安全领域的重大挑战与发展契机,将引发信息安全领域又一次重要的技术变革.
    2016,27(1):45-71, DOI:10.13328/j.cnki.jos.004914
    [摘要] (28924) [HTML] (2286) [PDF 880.96 K] (30359)
    摘要:
    Android是目前最流行的智能手机软件平台,报告称,2014年,Android的销售量占到全球份额81%的绝对优势,首次达到10亿部.其余如苹果、微软、黑莓与火狐等则远远落在后面.与此同时,Android智能手机的日益流行也吸引了黑客,导致Android恶意软件应用的大量增加.从Android体系结构、设计原则、安全机制、主要威胁、恶意软件分类与检测、静态分析与动态分析、机器学习方法、安全扩展方案等多维角度,对Android安全的最新研究进展进行了总结与分析.
    2009,20(5):1337-1348, DOI:
    [摘要] (27971) [HTML] (0) [PDF 1.06 M] (44190)
    摘要:
    针对云计算这样一个范畴综述了当前云计算所采用的技术,剖析其背后的技术含义以及当前云计算参与企业所采用的云计算实现方案.云计算包含两个方面的含义:一方面是底层构建的云计算平台基础设施,是用来构造上层应用程序的基础;另外一方面是构建在这个基础平台之上的云计算应用程序.主要是针对云计算的基础架构的研究与实现状况给出综述,对于云计算的应用也有所涉及.云计算有3个最基本的特征:第1个是基础设施架构在大规模的廉价服务器集群之上;第二是应用程序与底层服务协作开发,最大限度地利用资源;第3个是通过多个廉价服务器之间的冗余,通过软件获得高可用性.云计算达到了两个分布式计算的重要目标:可扩展性和高可用性.可扩展性表达了云计算能够无缝地扩展到大规模的集群之上,甚至包含数千个节点同时处理.高可用性代表了云计算能够容忍节点的错误,甚至有很大一部分节点发生失效也不会影响程序的正确运行.通过此文可以了解云计算的当前发展状况以及未来的研究趋势.
    2008,19(1):48-61, DOI:
    [摘要] (27939) [HTML] (0) [PDF 671.39 K] (60843)
    摘要:
    对近年来聚类算法的研究现状与新进展进行归纳总结.一方面对近年来提出的较有代表性的聚类算法,从算法思想、关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析.最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题.上述工作将为聚类分析和数据挖掘等研究提供有益的参考.
    2009,20(2):271-289, DOI:
    [摘要] (26873) [HTML] (0) [PDF 675.56 K] (42485)
    摘要:
    进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多目标优化问题,一些区别于传统Pareto占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法.
    2005,16(1):1-7, DOI:
    [摘要] (22061) [HTML] (0) [PDF 614.61 K] (20310)
    摘要:
    在4个方面对软件工程技术的发展进行一些思索:(1) 从事物发展规律的角度,揭示软件工程技术发展历程;(2) 从软件本质特征的角度,浅析虚拟机各抽象层次的构造;(3) 从软件开发的本质,提出了软件工程学科研究的内容,并研究了软件工业化生产模式;(4) 以Internet的出现为背景,探索了软件技术的发展趋势.
    2004,15(3):428-442, DOI:
    [摘要] (20503) [HTML] (0) [PDF 1009.57 K] (16487)
    摘要:
    随着电子商务的迅速崛起,基于Web的应用模式迅速发展,Web应用从局部化发展到全球化,从B2C(business-to-customer)发展到B2B(business-to-business),从集中式发展到分布式,Web服务成为电子商务的有效解决方案.Web服务是一个崭新的分布式计算模型,是Web上数据和信息集成的有效机制.Web服务的新型构架,Web服务的高效执行方式,Web服务与其他成熟技术的有机结合以及Web服务的集成是解决现实应用问题的重要技术.从Web服务研究的不同侧面对其进行了综述,阐述了Web服务的基本概念,分析了当前Web服务的主要研究问题及其核心支撑技术,概括了Web服务中的数据集成技术、Web服务的组合、语义Web服务、Web服务发现,Web服务安全,P2P(Peer-to-Peer)新型计算环境下的Web服务解决方案和网格服务等方面的研究内容,并对这些技术进行了总结,结合已有的研究成果,展望了Web服务未来的研究方向及其面临的挑战.
    2010,21(8):1834-1848, DOI:
    [摘要] (20467) [HTML] (0) [PDF 682.96 K] (55154)
    摘要:
    对文本情感分析的研究现状与进展进行了总结.首先将文本情感分析归纳为3项主要任务,即情感信息抽取、情感信息分类以及情感信息的检索与归纳,并对它们进行了细致的介绍和分析;进而介绍了文本情感分析的国内外评测和资源建设情况;最后介绍了文本情感分析的应用.重在对文本情感分析研究的主流方法和前沿进展进行概括、比较和分析.
    2005,16(5):857-868, DOI:
    [摘要] (19711) [HTML] (0) [PDF 489.65 K] (29664)
    摘要:
    作为一种全新的信息获取和处理技术,无线传感器网络可以在广泛的应用领域内实现复杂的大规模监测和追踪任务,而网络自身定位是大多数应用的基础.介绍了无线传感器网络自身定位系统和算法的性能评价标准和分类方法,着重综述了近年来该领域具有代表性的算法及系统的原理和特点,并指出未来的研究方向.
    2009,20(1):54-66, DOI:
    [摘要] (19482) [HTML] (0) [PDF 1.41 M] (49582)
    摘要:
    网络簇结构是复杂网络最普遍和最重要的拓扑属性之一,具有同簇节点相互连接密集、异簇节点相互连接稀疏的特点.揭示网络簇结构的复杂网络聚类方法对分析复杂网络拓扑结构、理解其功能、发现其隐含模式、预测其行为都具有十分重要的理论意义,在社会网、生物网和万维网中具有广泛应用.综述了复杂网络聚类方法的研究背景、研究意义、国内外研究现状以及目前所面临的主要问题,试图为这个新兴的研究方向勾画出一个较为全面和清晰的概貌,为复杂网络分析、数据挖掘、智能Web、生物信息学等相关领域的研究者提供有益的参考.
    2012,23(4):962-986, DOI:10.3724/SP.J.1001.2012.04175
    [摘要] (18600) [HTML] (0) [PDF 2.09 M] (31212)
    摘要:
    云计算作为下一代计算模式,在科学计算和商业计算领域均发挥着重要作用,受到当前学术界和企业界的广泛关注.云计算环境下的分布存储主要研究数据在数据中心上的组织和管理,作为云计算环境的核心基础设施,数据中心通常由百万级以上节点组成,存储其上的数据规模往往达到PB 级甚至EB 级,导致数据失效成为一种常态行为,极大地限制了云计算的应用和推广,增加了云计算的成本.因此,提高可扩展性和容错性、降低成本,成为云计算环境下分布存储研究的若干关键技术.针对如何提高存储的可扩展性、容错性以及降低存储的能耗等目标,从数据中心网络的设计、数据的存储组织方式等方面对当前分布存储的关键技术进行了综述.首先,介绍并对比了当前典型的数据中心网络结构的优缺点;其次,介绍并对比了当前常用的两种分布存储容错技术,即基于复制的容错技术和基于纠删码的容错技术;第三,介绍了当前典型的分布存储节能技术,并分析了各项技术的优缺点;最后指出了当前技术面临的主要挑战和下一步研究的方向.
    2012,23(1):32-45, DOI:10.3724/SP.J.1001.2012.04091
    [摘要] (18561) [HTML] (0) [PDF 408.86 K] (30291)
    摘要:
    在科学研究、计算机仿真、互联网应用、电子商务等诸多应用领域,数据量正在以极快的速度增长,为了分析和利用这些庞大的数据资源,必须依赖有效的数据分析技术.传统的关系数据管理技术(并行数据库)经过了将近40 年的发展,在扩展性方面遇到了巨大的障碍,无法胜任大数据分析的任务;而以MapReduce 为代表的非关系数据管理和分析技术异军突起,以其良好的扩展性、容错性和大规模并行处理的优势,从互联网信息搜索领域开始,进而在数据分析的诸多领域和关系数据管理技术展开了竞争.关系数据管理技术阵营在丧失搜索这个阵地之后,开始考虑自身的局限性,不断借鉴MapReduce 的优秀思想改造自身,而以MapReduce 为代表的非关系数据管理技术阵营,从关系数据管理技术所积累的宝贵财富中挖掘可以借鉴的技术和方法,不断解决其性能问题.面向大数据的深度分析需求,新的架构模式正在涌现.关系数据管理技术和非关系数据管理技术在不断的竞争中互相取长补短,在新的大数据分析生态系统内找到自己的位置.
    2009,20(3):524-545, DOI:
    [摘要] (17260) [HTML] (0) [PDF 1.09 M] (21836)
    摘要:
    通过软件开发实践,人们逐步地认识到软件产品的质量在很大程度上依赖于产品开发时所使用的过程.软件过程建模是通过特定的方法对软件过程进行抽象、表示和分析以增加对软件过程的理解,同时,可执行的(enactable)软件过程模型可以直接指导实际软件开发活动,进而规范软件开发行为并最终提高软件质量.为了系统地了解软件过程建模方法研究的现状和最新进展,采用系统评价(systematic review)方法对该领域最近10年的主要研究进行了概括和分析.从一系列的相关研究中,选出来自20 个会议和7 种期刊的72 篇文献,作为系统评价的依据.该系统评价回答了如下关于软件过程建模方法的3 个问题,以便从总体上概括和把握该领域的研究:1) 软件过程建模方法主要基于什么范式;2) 软件过程建模方法研究的主要目的集中在哪些方面;3) 软件过程建模方法的研究有哪些新的趋势.同时,在仔细回顾和分析软件过程建模领域研究现状的基础上,给出了一种多维度的集成化软件过程建模方法.该方法有助于解决过程建模领域所面临的主要问题.
    2009,20(1):124-137, DOI:
    [摘要] (16816) [HTML] (0) [PDF 1.06 M] (21799)
    摘要:
    大量具备短距离通信能力的智能设备的出现推动了无线自组网应用的迅速发展.但在许多实际应用环境中,节点移动、网络稀疏或信号衰减等各种原因通常导致形成的网络大部分时间不连通.传统的移动自组织网络传输模式要求通信源和目标节点之间存在至少一条完整的路径,因而无法在这类环境中运行.机会网络利用节点移动形成的通信机会逐跳传输消息,以"存储-携带-转发"的路由模式实现节点间通信,这种完全不同于传统网络通信模式的新兴组网方式引起了研究界极大的兴趣.首先介绍机会网络的概念和理论基础,并给出了当前机会网络的一些典型应用,然后详细阐述了机会网络研究的热点问题,包括机会转发机制、移动模型和基于机会通信的数据分发和检索等,并简要叙述了机会网络的通信中间件、协作和安全机制以及机会网络新的应用等其他研究问题,最后进行总结并展望了机会网络未来一段时间内的研究重点.
    2004,15(8):1208-1219, DOI:
    [摘要] (16349) [HTML] (0) [PDF 948.49 K] (13730)
    摘要:
    随着网络系统应用及复杂性的增加,网络蠕虫成为网络系统安全的重要威胁.在网络环境下,多样化的传播途径和复杂的应用环境使网络蠕虫的发生频率增高、潜伏性变强、覆盖面更广,网络蠕虫成为恶意代码研究中的首要课题.首先综合论述网络蠕虫的研究概况,然后剖析网络蠕虫的基本定义、功能结构和工作原理,讨论网络蠕虫的扫描策略和传播模型,归纳总结目前防范网络蠕虫的最新技术.最后给出网络蠕虫研究的若干热点问题与展望.
    2009,20(11):2965-2976, DOI:
    [摘要] (16315) [HTML] (0) [PDF 442.42 K] (14917)
    摘要:
    研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该算法使用高效的期望支持度计算方法和搜索空间裁剪技术,使得计算子图模式的期望支持度所需的子图同构测试的数量从指数级降低到线性级.实验结果表明,该算法比简单的深度优先搜索算法快3~5个数量级,有很高的效率和可扩展性.
    2009,20(5):1226-1240, DOI:
    [摘要] (16191) [HTML] (0) [PDF 926.82 K] (15896)
    摘要:
    对几种智能规划方法中利用的逻辑演绎与推理技术予以分析,分别介绍利用命题逻辑的基于可满足性的规划方法与规划系统,利用模态逻辑与析取推理的Conformant规划方法与规划系统,利用非单调逻辑的规划方法和利用模糊描述逻辑的Flexible规划方法,并结合国际规划竞赛和相关论文等的实验结论说明上述方法的有效性和可行性.最后,提出目前基于自动推理技术的智能规划方法所面临的挑战、可能的处理方法以及与之相关的研究热点与趋势.
    2003,14(10):1717-1727, DOI:
    [摘要] (16062) [HTML] (0) [PDF 839.25 K] (14348)
    摘要:
    传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和无线通信技术,能够协作地实时监测、感知和采集各种环境或监测对象的信息,并对其进行处理,传送到这些信息的用户.传感器网络是计算机科学技术的一个新的研究领域,具有十分广阔的应用前景,引起了学术界和工业界的高度重视.介绍了传感器网络及其数据管理的概念和特点,探讨了传感器网络及其数据管理的研究问题,并综述了传感器网络及其数据管理的研究现状.
    2009,20(2):350-362, DOI:
    [摘要] (16058) [HTML] (0) [PDF 1.39 M] (39960)
    摘要:
    全面地总结推荐系统的研究现状,旨在介绍网络推荐的算法思想、帮助读者了解这个研究领域.首先阐述了推荐系统研究的工业需求、主要研究机构和成果发表的期刊会议;在讨论了推荐问题的形式化和非形式化定义之后,对主流算法进行了分类和对比;最后总结了常用数据集和评测指标,领域的重难点问题和未来可能的研究热点.
    2015,26(1):62-81, DOI:10.13328/j.cnki.jos.004701
    [摘要] (15703) [HTML] (2631) [PDF 1.04 M] (25776)
    摘要:
    网络抽象促使软件定义网络(software-defined networking,简称SDN)的产生.SDN将数据平面与控制平面解耦合,简化了网络管理.首先从SDN诞生发展的背景入手,梳理了SDN的体系结构,包括数据层、控制层和应用层,并按照SDN的层次结构深入阐述其关键技术,特别分析了一致性、可用性和容错性等特性.然后,论述了SDN在不同应用场景下的最新研究成果.最后,展望未来研究工作.
    2014,25(4):839-862, DOI:10.13328/j.cnki.jos.004558
    [摘要] (15335) [HTML] (2177) [PDF 1.32 M] (19048)
    摘要:
    大数据计算主要有批量计算和流式计算两种形态,目前,关于大数据批量计算系统的研究和讨论相对充分,而如何构建低延迟、高吞吐且持续可靠运行的大数据流式计算系统是当前亟待解决的问题且研究成果和实践经验相对较少.总结了典型应用领域中流式大数据所呈现出的实时性、易失性、突发性、无序性、无限性等特征,给出了理想的大数据流式计算系统在系统结构、数据传输、应用接口、高可用技术等方面应该具有的关键技术特征,论述并对比了已有的大数据流式计算系统的典型实例,最后阐述了大数据流式计算系统在可伸缩性、系统容错、状态一致性、负载均衡、数据吞吐量等方面所面临的技术挑战.
    2009,20(10):2729-2743, DOI:
    [摘要] (14344) [HTML] (0) [PDF 1.12 M] (10771)
    摘要:
    基于多跳的无线传感器网络,越靠近sink的传感器节点因需要转发更多的数据,其能量消耗就越快,从而在sink周围形成了一种称为“能量洞”的现象.“能量洞”问题会导致整个网络由于内部节点能量过早耗尽而结束寿命,同时,网络中离sink较远的节点仍有大量能量剩余.研究“能量洞”现象,基于改进的分级环模型,总结出调节各环内节点的数据传输距离是实现网络节能的有效方法.证明搜索各区域最优的传输距离是一个多目标优化问题,即是NP难问题.从而提出一种基于蚁群优化的分布式算法,各区域根据其节点分布情况自适应地探索近似最优的传输距离,延长网络寿命.模拟实验结果表明,该算法在较短的时间内能够收敛到合理的解,并且得到的网络寿命接近于理想情况下的最优时间,与现有的类似算法相比,该算法提供了更长的网络寿命,并能适用于非均匀节点分布情况.
    2012,23(1):1-20, DOI:10.3724/SP.J.1001.2012.04100
    [摘要] (14343) [HTML] (0) [PDF 1017.73 K] (30707)
    摘要:
    近年来,上下文感知推荐系统已成为推荐系统研究领域最为活跃的研究领域之一.如何利用上下文信息进一步提高推荐系统的推荐精确度和用户满意度,成为上下文感知推荐系统的主要任务.从面向过程的角度对最近几年上下文感知推荐系统的研究进展进行综述,对其系统框架、关键技术、主要模型、效用评价以及应用实践等进行了前沿概括、比较和分析.最后,对上下文感知推荐系统有待深入的研究难点和发展趋势进行了展望
    2012,23(5):1148-1166, DOI:10.3724/SP.J.1001.2012.04195
    [摘要] (14181) [HTML] (0) [PDF 946.37 K] (16982)
    摘要:
    随着云计算的发展,云数据库的重要性和价值日益显现.介绍了云数据库的特性、影响、相关产品.详细讨论了云数据库领域的研究问题,包括数据模型、系统体系架构、事务一致性、编程模型、数据安全、性能优化和测试基准等.最后讨论了云数据库未来的研究方向.
    2000,11(11):1460-1466, DOI:
    [摘要] (14106) [HTML] (0) [PDF 520.69 K] (11225)
    摘要:
    入侵检测是近年来网络安全研究的热 点.首先说明入侵检测的必要性,并给出入侵检测的概念和模型,概述了多种入侵检测方法及 体系结构.最后,讨论了该领域当前存在的问题及今后的研究方向.
    2013,24(8):1786-1803, DOI:10.3724/SP.J.1001.2013.04416
    [摘要] (13810) [HTML] (0) [PDF 1.04 M] (16636)
    摘要:
    针对大数据管理的新需求,呈现出了许多面向特定应用的NoSQL 数据库系统.针对基于key-value 数据模型的NoSQL 数据库的相关研究进行综述.首先,介绍了大数据的特点以及支持大数据管理系统面临的关键技术问题;然后,介绍了相关前沿研究和研究挑战,其中典型的包括系统体系结构、数据模型、访问方式、索引技术、事务特性、系统弹性、动态负载均衡、副本策略、数据一致性策略、基于flash 的多级缓存机制、基于MapReduce 的数据处理策略和新一代数据管理系统等;最后给出了研究展望.
    2002,13(7):1228-1237, DOI:
    [摘要] (13792) [HTML] (0) [PDF 500.04 K] (13987)
    摘要:
    近年来,软件体系结构逐渐成为软件工程领域的研究热点以及大型软件系统与软件产品线开发中的关键技术之一.归纳了软件体系结构技术发展过程及其主要研究方向.在分析了典型的软件体系结构概念之后,给出了软件体系结构的定义.通过总结软件体系结构领域的若干研究活动,提出了软件体系结构研究的两大思路,并从7个方面介绍了软件体系结构研究进展.探讨了软件体系结构研究中的不足之处,并分析其原因.作为总结,给出了软件体系结构领域最有前途的发展趋势.
    2004,15(4):571-583, DOI:
    [摘要] (13648) [HTML] (0) [PDF 1005.17 K] (9810)
    摘要:
    在诸如文件共享等无中心的Peer-to-Peer环境中,资源共享是用户自愿的行为.在这类系统中,由于用户不为自身的行为担负(法律)责任,因而节点间的信任关系往往很难通过传统的信任机制建立.一种更合理的考虑是参考人际网络中基于推荐的信任关系建立方法.现有的模型不能很好地解决模型的迭代收敛性问题,同时缺乏对诸如冒名、诋毁等安全性问题的考虑.针对上述问题,在节点推荐的基础上提出了一种基于Peer-to-Peer环境的信任模型,并给出了该模型的数学分析和分布式实现方法.分析及仿真表明,该信任模型较已有模型在迭代的收敛性、模型的安全性等问题上有较大改进.
    2006,17(7):1588-1600, DOI:
    [摘要] (13607) [HTML] (0) [PDF 808.73 K] (14308)
    摘要:
    在无线传感器网络体系结构中,网络层的路由技术至关重要.分簇路由具有拓扑管理方便、能量利用高效、数据融合简单等优点,成为当前重点研究的路由技术.分析了无线传感器网络分簇路由机制,着重从簇头的产生、簇的形成和簇的路由角度系统地描述了当前典型的分簇路由算法,并比较和分析了这些算法的特点和适用情况.最后结合该领域当前研究现状,指出分簇路由算法未来的研究重点.
    2011,22(1):115-131, DOI:10.3724/SP.J.1001.2011.03950
    [摘要] (13586) [HTML] (0) [PDF 845.91 K] (27805)
    摘要:
    Internet 流量模型对网络性能管理、QoS、准入控制等都有很重要的意义和作用.首先总结了现阶段已发现的主要网络流量的特性及相关度量参数,概要地介绍网络流量建模的意义和分类,然后按照“传统-自相似-流量建模的新发展”这3 个阶段阐述网络流量建模的发展历程与最新的研究成果,最后针对目前网络流量建模中存在的难点问题,展望了该领域未来的研究发展方向.
    2009,20(1):11-29, DOI:
    [摘要] (13541) [HTML] (0) [PDF 787.30 K] (14042)
    摘要:
    约束优化问题是科学和工程应用领域经常会遇到的一类数学规划问题.近年来,约束优化问题求解已成为进化计算研究的一个重要方向.从约束优化进化算法=约束处理技术+进化算法的研究框架出发,从约束处理技术和进化算法两个基本方面对约束优化进化算法的研究及进展进行了综述.此外,对约束优化进化算法中的一些重要问题进行了探讨.最后进行了各种算法的比较性总结,深入分析了目前约束优化进化算法中亟待解决的问题,并指出了值得进一步研究的方向.
    2008,19(zk):112-120, DOI:
    [摘要] (13480) [HTML] (0) [PDF 594.29 K] (14453)
    摘要:
    无线移动Ad Hoc网络是一种不依赖任何固定基础设施的移动无线多跳网络.由于其动态性和资源的限制,在Ad Hoc网络中提供多路径路由是一个重要的研究课题.描述了一种Ad Hoc网络中基于信息熵选择的稳定多路径路由算法(stability multipath on-demand routing,简称SMDR),提出了路径熵的度量参数,并利用路径熵来选择稳定的、长寿命的多路径,减少了重构路由的次数,从而在网络拓扑频繁变化的Ad Hoc网络环境中较好地提供QoS保证和提高数据传输率.仿真结果表明,SMDR协议改进了分组传输率、端到端时延和路由负载率.SMDR协议为解决动态的Ad Hoc网络多路径传输提供了一种新的有效途径.
    2015,26(1):26-39, DOI:10.13328/j.cnki.jos.004631
    [摘要] (13458) [HTML] (2171) [PDF 763.52 K] (15461)
    摘要:
    近年来,迁移学习已经引起了广泛的关注和研究.迁移学习是运用已存有的知识对不同但相关领域问题进行求解的一种新的机器学习方法.它放宽了传统机器学习中的两个基本假设:(1) 用于学习的训练样本与新的测试样本满足独立同分布的条件;(2) 必须有足够可利用的训练样本才能学习得到一个好的分类模型.目的是迁移已有的知识来解决目标领域中仅有少量有标签样本数据甚至没有的学习问题.对迁移学习算法的研究以及相关理论研究的进展进行了综述,并介绍了在该领域所做的研究工作,特别是利用生成模型在概念层面建立迁移学习模型.最后介绍了迁移学习在文本分类、协同过滤等方面的应用工作,并指出了迁移学习下一步可能的研究方向.
    2013,24(1):50-66, DOI:10.3724/SP.J.1001.2013.04276
    [摘要] (13289) [HTML] (0) [PDF 0.00 Byte] (16727)
    摘要:
    作为云平台提升应用性能的一种重要手段,分布式缓存技术近年来受到了工业界和学术界的广泛关注.从云计算与分布式缓存技术的结合入手,分析介绍了分布式缓存的特性、典型应用场景、发展阶段、相关标准规范以及推动缓存技术发展的若干关键要素.为系统地了解分布式缓存技术的现状和不足,建立了一个云环境下分布式缓存技术的分析框架——DctAF.该框架从分析云计算的特点和缓存技术的边界出发,涵盖6个分析维度.基于DctAF框架,对当前缓存技术进行总结和分析,并对典型系统进行比较.在此基础上,深入阐述了云环境下分布式缓存系统面临的挑战;围绕上述挑战,分析和比较了已有的研究工作.
    2003,14(9):1621-1628, DOI:
    [摘要] (13089) [HTML] (0) [PDF 680.35 K] (19726)
    摘要:
    推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量.
    2008,19(8):1902-1919, DOI:
    [摘要] (12927) [HTML] (0) [PDF 521.73 K] (13370)
    摘要:
    可视化语言技术比一维文本语言在描述软件组成方面具有优越性.由于图表和图形概念在系统建模中的广泛使用,可视化语言可以应用于需求分析、设计、测试和维护等软件开发的各个阶段.除了具有直观易见的特点之外,图文法在计算机上的精确建模和验证能力,为设计可视化语言提供了一个坚实的理论基础.讨论了可视化语言的形式理论基础,回顾了相关的可视化图形编程环境.特别提出了一种空间图文法,并且用该图文法定义了统一建模语言的行为语义.基于空间图文法,开发了一种基于模式驱动的框架,以帮助软件架构与设计.
    2008,19(8):1947-1964, DOI:
    [摘要] (12927) [HTML] (0) [PDF 811.11 K] (9855)
    摘要:
    设计与实现面向领域应用的交互式信息可视化软件十分困难.缺乏统一的开发方法与支撑工具箱,为非专家用户提供对层次、网络、多维等数据类型的统一支持,对各种可视化技术与交互技术的统一支持,以及对信息可视化任务的统一支持.针对此问题,提出了一种模型驱动的交互式信息可视化开发方法Daisy.首先,提出了交互式信息可视化界面模型IIVM(interactive information visualization interface model);然后,提出了基于IIVM的交互式信息可视化开发方法Daisy,讨论了该方法的两个核心技术:IIVM建模与描述文件生成方法、系统自动生成方法.同时,给出了Daisy工具箱,包括Daisy建模工具、Daisy系统自动生成工具以及运行时框架与组件库.最后,给出了该开发方法与工具箱的应用实例.实例表明,该方法能够为交互式信息可视化开发的统一支撑方法问题提供一种有效的解决方案.
    2003,14(9):1635-1644, DOI:
    [摘要] (12916) [HTML] (0) [PDF 622.06 K] (11762)
    摘要:
    计算机取证研究的是如何为调查计算机犯罪提供彻底、有效和安全的技术.其关键是确保证据的真实性、可靠性、完整性和符合法律规定.介绍了计算机取证的过程以及取证软件的原理和实现,并且给出完整的取证实例.从理论和实现两个方面讨论了现有取证技术的局限性和面临的挑战,并展望其未来的发展方向.由于计算机犯罪手段的变化和其他技术的引入,现有的取证工作将向着深入和综合的方向发展.
    2002,13(10):1952-1961, DOI:
    [摘要] (12888) [HTML] (0) [PDF 570.96 K] (11979)
    摘要:
    对个性化服务技术中用户描述文件的表达与更新、资源描述文件的表达、个性化推荐技术、个性化服务体系结构以及该领域的主要研究成果进行了综述.通过比较现有原型系统的实现方式,详细讨论了实现个性化服务的关键技术.此外,分析了3个具有代表性的个性化服务系统.最后对个性化服务技术进一步研究工作的方向进行了展望.
    2012,23(1):82-96, DOI:10.3724/SP.J.1001.2012.04101
    [摘要] (12793) [HTML] (0) [PDF 394.07 K] (14295)
    摘要:
    以僵尸网络为载体的各种网络攻击活动是目前互联网所面临的最为严重的安全威胁之一.虽然近年来这方面的研究取得了显著的进展,但是由于僵尸网络不断演化、越来越复杂和隐蔽以及网络和系统体系结构的限制给检测和防御带来的困难,如何有效应对僵尸网络的威胁仍是一项持续而具有挑战性的课题.首先从僵尸网络的传播、攻击以及命令与控制这3 个方面介绍了近年来僵尸网络工作机制的发展,然后从监测、工作机制分析、特征分析、检测和主动遏制这5 个环节对僵尸网络防御方面的研究进行总结和分析,并对目前的防御方法的局限、僵尸网络的发展趋势和进一步的研究方向进行了讨论.
    2010,21(2):231-247, DOI:
    [摘要] (12677) [HTML] (0) [PDF 1.21 M] (16052)
    摘要:
    通过分析服务组合的故障需求,给出服务组合故障处理的框架.该框架采用Petri网来解决服务组合的错误发现及其处理问题.重点讨论了可用服务失败、组件失败及网络故障的情况,并相应地给出了服务组合故障模型.在此基础上对故障处理模型进行分析,给出服务组合故障处理正确性准则,并证明了其正确性.最后,采用CTL (computational tree logic)描述相关性质并提出验证服务组合故障分析的实施算法.仿真结果表明,该方法在处理服务组合故障时具有一定的优越性.
    2008,19(7):1565-1580, DOI:
    [摘要] (12594) [HTML] (0) [PDF 815.02 K] (16077)
    摘要:
    软件缺陷预测技术从20世纪70年代发展至今,一直是软件工程领域最活跃的内容之一,在分析软件质量、平衡软件成本方面起着重要的作用.研究和讨论了软件缺陷预测技术的起源、发展和当前所面临的挑战,对主流的缺陷预测技术进行了分类讨论和比较,并对典型的软件缺陷的分布模型给出了案例研究.
    2017,28(1):1-16, DOI:10.13328/j.cnki.jos.005139
    [摘要] (12452) [HTML] (2575) [PDF 1.75 M] (8948)
    摘要:
    背包问题(knapsack problem,简称KP)是一类著名的组合优化问题,也是一类NP难问题,它包括0-1背包问题、有界背包问题、多维背包问题、多背包问题、多选择背包问题、二次背包问题、动态背包问题和折扣背包问题等多种形式,在众多领域有着广泛的应用.演化算法(EAs)是一类有效的快速近似求解KP的算法.对近10余年来利用EAs求解KP的研究情况进行了较为详细的总结,一方面讨论了利用EAs求解各种KP问题时个体的编码方法与处理不可行解的有效方法,另一方面,为今后进一步利用最新提出的EAs求解KP问题提供了一条可借鉴的思路.
    2010,21(7):1620-1634, DOI:
    [摘要] (12424) [HTML] (0) [PDF 765.23 K] (19580)
    摘要:
    车用自组网作为移动自组网在智能交通系统中的应用,有望为人们提供更安全、效率更高的旅行方式.广播协议为危险警告、协同驾驶、路况通报等交通信息的发布提供了有效途径.简要介绍了车用自组网的特点和应用分类.采用分析和比较方法,讨论各种信息广播协议的特点、性能差异和应用范围,并针对车用自组网的特点及应用需求指出未来信息广播模型的设计思想和突破方向.
    2010,21(5):916-929, DOI:
    [摘要] (12267) [HTML] (0) [PDF 944.50 K] (17306)
    摘要:
    重复数据删除技术主要分为两类:相同数据的检测技术和相似数据的检测与编码技术,系统地总结了 这两类技术,并分析了其优缺点.此外,由于重复数据删除技术会影响存储系统的可靠性和性能,又总结了针对这 两方面的问题提出的各种技术.通过对重复数据删除技术当前研究现状的分析,得出如下结论:a) 重复数据删除 中的数据特性挖掘问题还未得到完全解决,如何利用数据特征信息有效地消除重复数据还需要更深入的研 究;b) 从存储系统设计的角度,如何引入恰当的机制打破重复数据删除技术的可靠性局限并减少重复数据删除技术带来的额外系统开销也是一个需要深入研究的方面.
    2006,17(9):1848-1859, DOI:
    [摘要] (12217) [HTML] (0) [PDF 770.40 K] (20596)
    摘要:
    文本自动分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.提出了基于机器学习的文本分类技术所面临的互联网内容信息处理等复杂应用的挑战,从模型、算法和评测等方面对其研究进展进行综述评论.认为非线性、数据集偏斜、标注瓶颈、多层分类、算法的扩展性及Web页分类等问题是目前文本分类研究的关键问题,并讨论了这些问题可能采取的方法.最后对研究的方向进行了展望.
    2008,19(10):2706-2719, DOI:
    [摘要] (12075) [HTML] (0) [PDF 778.29 K] (11462)
    摘要:
    Web搜索引擎已经成为人们从海量Web信息中快速找到所需信息的重要工具,随着Web数据量的爆炸性增长,传统的集中式搜索引擎已经越来越不能满足人们不断增长的信息获取需求.随着对等网络(peer-to-peer,简称P2P)技术的快速发展,人们提出了基于P2P的Web搜索技术并迅速成为研究热点.研究的目的是对现有的基于P2P的Web搜索技术进行总结,以期为进一步研究指明方向.首先分析了基于P2P的Web搜索面临的诸多挑战;然后重点总结分析了基于P2P的Web搜索的各项关键技术的研究现状,包括系统拓扑结构、数据存放策略、查询路由机制、索引切分策略、数据集选择、相关性排序、网页收集方法等;最后对已有的3个较有特色的基于P2P的Web搜索原型系统进行了介绍.
    2009,20(6):1393-1405, DOI:
    [摘要] (12057) [HTML] (0) [PDF 831.86 K] (18133)
    摘要:
    组合测试能够在保证错误检出率的前提下采用较少的测试用例测试系统.但是,组合测试用例集的构造问题的复杂度是NP完全的.组合测试方法的有效性和复杂性吸引了组合数学领域和软件工程领域的学者们对其进行深入的研究.总结了近年来在组合测试方面的研究进展,主要内容包括:组合测试准则的研究、组合测试生成问题与其他NP完全问题的联系、组合测试用例的数学构造方法、采用计算机搜索的组合测试生成方法以及基于组合测试的错误定位技术.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2003,14(7):1282-1291, DOI:
    [摘要] (36984) [HTML] (0) [PDF 832.28 K] (79493)
    摘要:
    集成了传感器、微机电系统和网络三大技术而形成的传感器网络是一种全新的信息获取和处理技术.在简要介绍传感器网络体系结构的基础上,分析和展望了一些有价值的应用领域.结合已有研究,总结并详细阐述了包括低功耗路由技术和介质访问控制方法等在内的热点研究问题.最后,针对应用需求,提出了几点研究设想.
    2008,19(1):48-61, DOI:
    [摘要] (27939) [HTML] (0) [PDF 671.39 K] (60843)
    摘要:
    对近年来聚类算法的研究现状与新进展进行归纳总结.一方面对近年来提出的较有代表性的聚类算法,从算法思想、关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析.最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题.上述工作将为聚类分析和数据挖掘等研究提供有益的参考.
    2010,21(8):1834-1848, DOI:
    [摘要] (20467) [HTML] (0) [PDF 682.96 K] (55154)
    摘要:
    对文本情感分析的研究现状与进展进行了总结.首先将文本情感分析归纳为3项主要任务,即情感信息抽取、情感信息分类以及情感信息的检索与归纳,并对它们进行了细致的介绍和分析;进而介绍了文本情感分析的国内外评测和资源建设情况;最后介绍了文本情感分析的应用.重在对文本情感分析研究的主流方法和前沿进展进行概括、比较和分析.
    2011,22(1):71-83, DOI:10.3724/SP.J.1001.2011.03958
    [摘要] (29729) [HTML] (0) [PDF 781.42 K] (54366)
    摘要:
    云计算代表IT 领域向集约化、规模化与专业化道路发展的趋势,是IT 领域正在发生的深刻变革.但它在提高使用效率的同时,为实现用户信息资产安全与隐私保护带来极大的冲击与挑战.当前,安全成为云计算领域亟待突破的重要问题,其重要性与紧迫性已不容忽视.分析了云计算对信息安全领域中技术、标准、监管等各方面带来的挑战;提出云计算安全参考框架及该框架下的主要研究内容;指出云计算的普及与应用是近年来信息安全领域的重大挑战与发展契机,将引发信息安全领域又一次重要的技术变革.
    2009,20(1):54-66, DOI:
    [摘要] (19482) [HTML] (0) [PDF 1.41 M] (49582)
    摘要:
    网络簇结构是复杂网络最普遍和最重要的拓扑属性之一,具有同簇节点相互连接密集、异簇节点相互连接稀疏的特点.揭示网络簇结构的复杂网络聚类方法对分析复杂网络拓扑结构、理解其功能、发现其隐含模式、预测其行为都具有十分重要的理论意义,在社会网、生物网和万维网中具有广泛应用.综述了复杂网络聚类方法的研究背景、研究意义、国内外研究现状以及目前所面临的主要问题,试图为这个新兴的研究方向勾画出一个较为全面和清晰的概貌,为复杂网络分析、数据挖掘、智能Web、生物信息学等相关领域的研究者提供有益的参考.
    2009,20(5):1337-1348, DOI:
    [摘要] (27971) [HTML] (0) [PDF 1.06 M] (44190)
    摘要:
    针对云计算这样一个范畴综述了当前云计算所采用的技术,剖析其背后的技术含义以及当前云计算参与企业所采用的云计算实现方案.云计算包含两个方面的含义:一方面是底层构建的云计算平台基础设施,是用来构造上层应用程序的基础;另外一方面是构建在这个基础平台之上的云计算应用程序.主要是针对云计算的基础架构的研究与实现状况给出综述,对于云计算的应用也有所涉及.云计算有3个最基本的特征:第1个是基础设施架构在大规模的廉价服务器集群之上;第二是应用程序与底层服务协作开发,最大限度地利用资源;第3个是通过多个廉价服务器之间的冗余,通过软件获得高可用性.云计算达到了两个分布式计算的重要目标:可扩展性和高可用性.可扩展性表达了云计算能够无缝地扩展到大规模的集群之上,甚至包含数千个节点同时处理.高可用性代表了云计算能够容忍节点的错误,甚至有很大一部分节点发生失效也不会影响程序的正确运行.通过此文可以了解云计算的当前发展状况以及未来的研究趋势.
    2009,20(2):271-289, DOI:
    [摘要] (26873) [HTML] (0) [PDF 675.56 K] (42485)
    摘要:
    进化多目标优化主要研究如何利用进化计算方法求解多目标优化问题,已经成为进化计算领域的研究热点之一.在简要总结2003年以前的主要算法后,着重对进化多目标优化的最新进展进行了详细讨论.归纳出当前多目标优化的研究趋势,一方面,粒子群优化、人工免疫系统、分布估计算法等越来越多的进化范例被引入多目标优化领域,一些新颖的受自然系统启发的多目标优化算法相继提出;另一方面,为了更有效的求解高维多目标优化问题,一些区别于传统Pareto占优的新型占优机制相继涌现;同时,对多目标优化问题本身性质的研究也在逐步深入.对公认的代表性算法进行了实验对比.最后,对进化多目标优化的进一步发展提出了自己的看法.
    2009,20(2):350-362, DOI:
    [摘要] (16058) [HTML] (0) [PDF 1.39 M] (39960)
    摘要:
    全面地总结推荐系统的研究现状,旨在介绍网络推荐的算法思想、帮助读者了解这个研究领域.首先阐述了推荐系统研究的工业需求、主要研究机构和成果发表的期刊会议;在讨论了推荐问题的形式化和非形式化定义之后,对主流算法进行了分类和对比;最后总结了常用数据集和评测指标,领域的重难点问题和未来可能的研究热点.
    2004,15(10):1493-1504, DOI:
    [摘要] (9054) [HTML] (0) [PDF 937.72 K] (38877)
    摘要:
    多年来计算机图形处理器(GP以大大超过摩尔定律的速度高速发展.图形处理器的发展极大地提高了计算机图形处理的速度和图形质量,并促进了与计算机图形相关应用领域的快速发展与此同时,图形处理器绘制流水线的高速度和并行性以及近年来发展起来的可编程功能为图形处理以外的通用计算提供了良好的运行平台,这使得基于GPU的通用计算成为近两三年来人们关注的一个研究热点.从介绍GPU的发展历史及其现代GPU的基本结构开始,阐述GPU用于通用计算的技术原理,以及其用于通用计算的主要领域和最新发展情况,并详细地介绍了GPU在流体模拟和代数计算、数据库应用、频谱分析等领域的应用和技术,包括在流体模拟方面的研究工作.还对GPU应用的软件工具及其最新发展作了较详细的介绍.最后,展望了GPU应用于通用计算的发展前景,并从硬件和软件两方面分析了这一领域未来所面临的挑战.
    2010,21(3):427-437, DOI:
    [摘要] (32823) [HTML] (0) [PDF 308.76 K] (38023)
    摘要:
    主要针对宋词这种特殊的汉语诗歌体裁,开展了有关自动生成算法及其实现方法的探索性研究.研究工作主要根据宋词特点,设计了基于平仄的编码方式、基于句法和语义加权值的适应度函数、基于精英主义和轮盘赌算法的选择策略,采用部分映射和启发式交叉算子和启发式变异算子,从而构建了一种基于遗传算法的宋词生成计算模型并进行了系统实现.实验结果表明,所建立的计算模型及其软件系统,初步实现了机器自动生成宋词的目标,对于给定的主题词和词牌,基本上能够自动生成有一定欣赏价值的宋词.论文的工作也填补了我国在汉语诗歌自动生成研究方面的不足.
    2014,25(9):1889-1908, DOI:10.13328/j.cnki.jos.004674
    [摘要] (11595) [HTML] (2657) [PDF 550.98 K] (35350)
    摘要:
    首先根据处理形式的不同,介绍了不同形式数据的特征和各自的典型应用场景以及相应的代表性处理系统,总结了大数据处理系统的三大发展趋势;随后,对系统支撑下的大数据分析技术和应用(包括深度学习、知识计算、社会计算与可视化等)进行了简要综述,总结了各种技术在大数据分析理解过程中的关键作用;最后梳理了大数据处理和分析面临的数据复杂性、计算复杂性和系统复杂性挑战,并逐一提出了可能的应对之策.
    2013,24(11):2476-2497, DOI:10.3724/SP.J.1001.2013.04486
    [摘要] (10227) [HTML] (0) [PDF 1.14 M] (34143)
    摘要:
    概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新进展.最后讨论了相关方向的研究前景.
    2012,23(4):962-986, DOI:10.3724/SP.J.1001.2012.04175
    [摘要] (18600) [HTML] (0) [PDF 2.09 M] (31212)
    摘要:
    云计算作为下一代计算模式,在科学计算和商业计算领域均发挥着重要作用,受到当前学术界和企业界的广泛关注.云计算环境下的分布存储主要研究数据在数据中心上的组织和管理,作为云计算环境的核心基础设施,数据中心通常由百万级以上节点组成,存储其上的数据规模往往达到PB 级甚至EB 级,导致数据失效成为一种常态行为,极大地限制了云计算的应用和推广,增加了云计算的成本.因此,提高可扩展性和容错性、降低成本,成为云计算环境下分布存储研究的若干关键技术.针对如何提高存储的可扩展性、容错性以及降低存储的能耗等目标,从数据中心网络的设计、数据的存储组织方式等方面对当前分布存储的关键技术进行了综述.首先,介绍并对比了当前典型的数据中心网络结构的优缺点;其次,介绍并对比了当前常用的两种分布存储容错技术,即基于复制的容错技术和基于纠删码的容错技术;第三,介绍了当前典型的分布存储节能技术,并分析了各项技术的优缺点;最后指出了当前技术面临的主要挑战和下一步研究的方向.
    2012,23(1):1-20, DOI:10.3724/SP.J.1001.2012.04100
    [摘要] (14343) [HTML] (0) [PDF 1017.73 K] (30707)
    摘要:
    近年来,上下文感知推荐系统已成为推荐系统研究领域最为活跃的研究领域之一.如何利用上下文信息进一步提高推荐系统的推荐精确度和用户满意度,成为上下文感知推荐系统的主要任务.从面向过程的角度对最近几年上下文感知推荐系统的研究进展进行综述,对其系统框架、关键技术、主要模型、效用评价以及应用实践等进行了前沿概括、比较和分析.最后,对上下文感知推荐系统有待深入的研究难点和发展趋势进行了展望
    2018,29(5):1471-1514, DOI:10.13328/j.cnki.jos.005519
    [摘要] (5711) [HTML] (2997) [PDF 4.38 M] (30513)
    摘要:
    计算机辅助检测/诊断(computer-aided detection/diagnosis,简称CAD)能够提高诊断的准确性,减少假阳性的产生,为医生提供有效的诊断决策支持.旨在分析计算机辅助诊断工具的最新发展.以CAD研究较多的四大致命性癌症的发病医学部位为主线,按照不同的成像技术和病类,对目前CAD在不同医学图像领域的应用进行了较为详尽的综述,从图像数据集、算法和评估方法等方面做多维度梳理.最后分析了医学图像CAD系统研究领域目前存在的问题,并对此领域的研究趋势和发展方向进行展望.
    2016,27(1):45-71, DOI:10.13328/j.cnki.jos.004914
    [摘要] (28924) [HTML] (2286) [PDF 880.96 K] (30359)
    摘要:
    Android是目前最流行的智能手机软件平台,报告称,2014年,Android的销售量占到全球份额81%的绝对优势,首次达到10亿部.其余如苹果、微软、黑莓与火狐等则远远落在后面.与此同时,Android智能手机的日益流行也吸引了黑客,导致Android恶意软件应用的大量增加.从Android体系结构、设计原则、安全机制、主要威胁、恶意软件分类与检测、静态分析与动态分析、机器学习方法、安全扩展方案等多维角度,对Android安全的最新研究进展进行了总结与分析.
    2012,23(1):32-45, DOI:10.3724/SP.J.1001.2012.04091
    [摘要] (18561) [HTML] (0) [PDF 408.86 K] (30291)
    摘要:
    在科学研究、计算机仿真、互联网应用、电子商务等诸多应用领域,数据量正在以极快的速度增长,为了分析和利用这些庞大的数据资源,必须依赖有效的数据分析技术.传统的关系数据管理技术(并行数据库)经过了将近40 年的发展,在扩展性方面遇到了巨大的障碍,无法胜任大数据分析的任务;而以MapReduce 为代表的非关系数据管理和分析技术异军突起,以其良好的扩展性、容错性和大规模并行处理的优势,从互联网信息搜索领域开始,进而在数据分析的诸多领域和关系数据管理技术展开了竞争.关系数据管理技术阵营在丧失搜索这个阵地之后,开始考虑自身的局限性,不断借鉴MapReduce 的优秀思想改造自身,而以MapReduce 为代表的非关系数据管理技术阵营,从关系数据管理技术所积累的宝贵财富中挖掘可以借鉴的技术和方法,不断解决其性能问题.面向大数据的深度分析需求,新的架构模式正在涌现.关系数据管理技术和非关系数据管理技术在不断的竞争中互相取长补短,在新的大数据分析生态系统内找到自己的位置.
    2005,16(5):857-868, DOI:
    [摘要] (19711) [HTML] (0) [PDF 489.65 K] (29664)
    摘要:
    作为一种全新的信息获取和处理技术,无线传感器网络可以在广泛的应用领域内实现复杂的大规模监测和追踪任务,而网络自身定位是大多数应用的基础.介绍了无线传感器网络自身定位系统和算法的性能评价标准和分类方法,着重综述了近年来该领域具有代表性的算法及系统的原理和特点,并指出未来的研究方向.
    2011,22(1):115-131, DOI:10.3724/SP.J.1001.2011.03950
    [摘要] (13586) [HTML] (0) [PDF 845.91 K] (27805)
    摘要:
    Internet 流量模型对网络性能管理、QoS、准入控制等都有很重要的意义和作用.首先总结了现阶段已发现的主要网络流量的特性及相关度量参数,概要地介绍网络流量建模的意义和分类,然后按照“传统-自相似-流量建模的新发展”这3 个阶段阐述网络流量建模的发展历程与最新的研究成果,最后针对目前网络流量建模中存在的难点问题,展望了该领域未来的研究发展方向.
    2021,32(2):349-369, DOI:10.13328/j.cnki.jos.006138
    [摘要] (7468) [HTML] (5574) [PDF 2.36 M] (26528)
    摘要:
    小样本学习旨在通过少量样本学习到解决问题的模型.近年来,在大数据训练模型的趋势下,机器学习和深度学习在许多领域中取得了成功.但是在现实世界中的很多应用场景中,样本量很少或者标注样本很少,而对大量无标签样本进行标注工作将会耗费很大的人力.所以,如何用少量样本进行学习就成为目前人们需要关注的问题.系统地梳理了当前小样本学习的相关工作,具体来说介绍了基于模型微调、基于数据增强和基于迁移学习这3大类小样本学习模型与算法的研究进展;将基于数据增强的方法细分为基于无标签数据、基于数据合成和基于特征增强这3类,将基于迁移学习的方法细分为基于度量学习、基于元学习和基于图神经网络这3类;总结了目前常用的小样本数据集和代表性的小样本学习模型在这些数据集上的实验结果;随后对小样本学习的现状和挑战进行了概述;最后展望了小样本学习的未来发展方向.
    2013,24(1):77-90, DOI:10.3724/SP.J.1001.2013.04339
    [摘要] (11135) [HTML] (0) [PDF 0.00 Byte] (26409)
    摘要:
    任务并行编程模型是近年来多核平台上广泛研究和使用的并行编程模型,旨在简化并行编程和提高多核利用率.首先,介绍了任务并行编程模型的基本编程接口和支持机制;然后,从3个角度,即并行性表达、数据管理和任务调度介绍任务并行编程模型的研究问题、困难和最新研究成果;最后展望了任务并行未来的研究方向.
    2015,26(1):62-81, DOI:10.13328/j.cnki.jos.004701
    [摘要] (15703) [HTML] (2631) [PDF 1.04 M] (25776)
    摘要:
    网络抽象促使软件定义网络(software-defined networking,简称SDN)的产生.SDN将数据平面与控制平面解耦合,简化了网络管理.首先从SDN诞生发展的背景入手,梳理了SDN的体系结构,包括数据层、控制层和应用层,并按照SDN的层次结构深入阐述其关键技术,特别分析了一致性、可用性和容错性等特性.然后,论述了SDN在不同应用场景下的最新研究成果.最后,展望未来研究工作.
    2017,28(4):959-992, DOI:10.13328/j.cnki.jos.005143
    [摘要] (8967) [HTML] (3535) [PDF 3.58 M] (23863)
    摘要:
    大数据时代下,移动互联网发展与移动终端的普及形成了海量移动对象轨迹数据.轨迹数据含有丰富的时空特征信息,通过轨迹数据处理技术,可以挖掘人类活动规律与行为特征、城市车辆移动特征、大气环境变化规律等信息.海量的轨迹数据也潜在性地暴露出移动对象行为特征、兴趣爱好和社会习惯等隐私信息,攻击者可以根据轨迹数据挖掘出移动对象的活动场景、位置等属性信息.另外,量子计算因其强大的存储和计算能力成为大数据挖掘重要的理论研究方向,用量子计算技术处理轨迹大数据,可以使一些复杂的问题得到解决并实现更高的效率.对轨迹大数据中数据处理关键技术进行了综述.首先,介绍轨迹数据概念和特征,并且总结了轨迹数据预处理方法,包括噪声滤波、轨迹压缩等;其次,归纳轨迹索引与查询技术以及轨迹数据挖掘已有的研究成果,包括模式挖掘、轨迹分类等;总结了轨迹数据隐私保护技术基本原理和特点,介绍了轨迹大数据支撑技术,如处理框架、数据可视化;也讨论了轨迹数据处理中应用量子计算的可能方式,并且介绍了目前轨迹数据处理中所使用的核心算法所对应的量子算法实现;最后,对轨迹数据处理面临的挑战与未来研究方向进行了总结与展望.
    2011,22(6):1299-1315, DOI:10.3724/SP.J.1001.2011.03993
    [摘要] (10945) [HTML] (0) [PDF 987.90 K] (22181)
    摘要:
    由于属性基加密(attribute-based encryption,简称ABE)机制以属性为公钥,将密文和用户私钥与属性关联,能够灵活地表示访问控制策略,从而极大地降低了数据共享细粒度访问控制带来的网络带宽和发送结点的处理开销.因此,ABE 在细粒度访问控制领域具有广阔的应用前景.在对基本ABE 机制及其两种扩展:密钥-策略ABE(KP-ABE)和密文-策略ABE(CP-ABE)进行深入研究、分析后,针对ABE 中的CP-ABE 机制访问结构的设计、属性密钥撤销、ABE 的密钥滥用、多授权机构等难点问题进行了深入探讨和综合分析,对比了现有研究工作的功能及开销.最后讨论了ABE 未来需进一步研究的问题和主要研究方向.
    2009,20(3):524-545, DOI:
    [摘要] (17260) [HTML] (0) [PDF 1.09 M] (21836)
    摘要:
    通过软件开发实践,人们逐步地认识到软件产品的质量在很大程度上依赖于产品开发时所使用的过程.软件过程建模是通过特定的方法对软件过程进行抽象、表示和分析以增加对软件过程的理解,同时,可执行的(enactable)软件过程模型可以直接指导实际软件开发活动,进而规范软件开发行为并最终提高软件质量.为了系统地了解软件过程建模方法研究的现状和最新进展,采用系统评价(systematic review)方法对该领域最近10年的主要研究进行了概括和分析.从一系列的相关研究中,选出来自20 个会议和7 种期刊的72 篇文献,作为系统评价的依据.该系统评价回答了如下关于软件过程建模方法的3 个问题,以便从总体上概括和把握该领域的研究:1) 软件过程建模方法主要基于什么范式;2) 软件过程建模方法研究的主要目的集中在哪些方面;3) 软件过程建模方法的研究有哪些新的趋势.同时,在仔细回顾和分析软件过程建模领域研究现状的基础上,给出了一种多维度的集成化软件过程建模方法.该方法有助于解决过程建模领域所面临的主要问题.
    2009,20(1):124-137, DOI:
    [摘要] (16816) [HTML] (0) [PDF 1.06 M] (21799)
    摘要:
    大量具备短距离通信能力的智能设备的出现推动了无线自组网应用的迅速发展.但在许多实际应用环境中,节点移动、网络稀疏或信号衰减等各种原因通常导致形成的网络大部分时间不连通.传统的移动自组织网络传输模式要求通信源和目标节点之间存在至少一条完整的路径,因而无法在这类环境中运行.机会网络利用节点移动形成的通信机会逐跳传输消息,以"存储-携带-转发"的路由模式实现节点间通信,这种完全不同于传统网络通信模式的新兴组网方式引起了研究界极大的兴趣.首先介绍机会网络的概念和理论基础,并给出了当前机会网络的一些典型应用,然后详细阐述了机会网络研究的热点问题,包括机会转发机制、移动模型和基于机会通信的数据分发和检索等,并简要叙述了机会网络的通信中间件、协作和安全机制以及机会网络新的应用等其他研究问题,最后进行总结并展望了机会网络未来一段时间内的研究重点.
    2004,15(11):1583-1594, DOI:
    [摘要] (8760) [HTML] (0) [PDF 1.57 M] (20760)
    摘要:
    在主、客观世界普遍存在的不确定性中,随机性和模糊性是最重要的两种形式.研究了随机性和模糊性之间的关联性,统一用熵作为客观事物和主观认知中不确定状态的度量,用超熵来度量不确定状态的变化,并利用熵和超熵进一步研究了混沌、分形和复杂网络中的不确定性,以及由此带来的种种进化和变异,为实现不确定性人工智能找到了一种简单、有效的形式化方法,也为包括形象思维在内的不确定性思维的自动化打下了基础.不确定性人工智能是人工智能进入21世纪的新发展.这个由多学科交叉渗透构成的新学科,必将使得机器能够具备人脑一样的不确定性信息和知识的表示能力、处理能力和思维能力.
    2006,17(9):1848-1859, DOI:
    [摘要] (12217) [HTML] (0) [PDF 770.40 K] (20596)
    摘要:
    文本自动分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.提出了基于机器学习的文本分类技术所面临的互联网内容信息处理等复杂应用的挑战,从模型、算法和评测等方面对其研究进展进行综述评论.认为非线性、数据集偏斜、标注瓶颈、多层分类、算法的扩展性及Web页分类等问题是目前文本分类研究的关键问题,并讨论了这些问题可能采取的方法.最后对研究的方向进行了展望.
    2014,25(1):37-50, DOI:10.13328/j.cnki.jos.004497
    [摘要] (9563) [HTML] (2704) [PDF 929.87 K] (20329)
    摘要:
    对语音情感识别的研究现状和进展进行了归纳和总结,对未来语音情感识别技术发展趋势进行了展望. 从5个角度逐步展开进行归纳总结,即情感描述模型、具有代表性的情感语音库、语音情感特征提取、语音情感识别算法研究和语音情感识别技术应用,旨在尽可能全面地对语音情感识别技术进行细致的介绍与分析,为相关研究人员提供有价值的学术参考;最后,立足于研究现状的分析与把握,对当前语音情感识别领域所面临的挑战与发展趋势进行了展望.侧重于对语音情感识别研究的主流方法和前沿进展进行概括、比较和分析.
    2005,16(1):1-7, DOI:
    [摘要] (22061) [HTML] (0) [PDF 614.61 K] (20310)
    摘要:
    在4个方面对软件工程技术的发展进行一些思索:(1) 从事物发展规律的角度,揭示软件工程技术发展历程;(2) 从软件本质特征的角度,浅析虚拟机各抽象层次的构造;(3) 从软件开发的本质,提出了软件工程学科研究的内容,并研究了软件工业化生产模式;(4) 以Internet的出现为背景,探索了软件技术的发展趋势.
    2018,29(10):2966-2994, DOI:10.13328/j.cnki.jos.005551
    [摘要] (9325) [HTML] (3997) [PDF 610.06 K] (20006)
    摘要:
    近年来,随着互联网技术和应用模式的迅猛发展,引发了互联网数据规模的爆炸式增长,其中包含大量有价值的知识.如何组织和表达这些知识,并对其进行深入计算和分析备受关注.知识图谱作为丰富直观的知识表达方式应运而生.面向知识图谱的知识推理是知识图谱的研究热点之一,已在垂直搜索、智能问答等应用领域发挥了重要作用.面向知识图谱的知识推理旨在根据已有的知识推理出新的知识或识别错误的知识.不同于传统的知识推理,由于知识图谱中知识表达形式的简洁直观、灵活丰富,面向知识图谱的知识推理方法也更加多样化.将从知识推理的基本概念出发,介绍近年来面向知识图谱知识推理方法的最新研究进展.具体地,根据推理类型划分,将面向知识图谱的知识推理分为单步推理和多步推理,根据方法的不同,每类又包括基于规则的推理、基于分布式表示的推理、基于神经网络的推理以及混合推理.详细总结这些方法,并探讨和展望面向知识图谱知识推理的未来研究方向和前景.
    2012,23(8):2058-2072, DOI:10.3724/SP.J.1001.2012.04237
    [摘要] (10000) [HTML] (0) [PDF 800.05 K] (20003)
    摘要:
    分布式拒绝服务(distributed denial of service,简称DDoS)攻击是当今互联网的重要威胁之一.基于攻击包所处网络层次,将DDoS 攻击分为网络层DDoS 攻击和应用层DDoS 攻击,介绍了两类攻击的各种检测和控制方法,比较了处于不同部署位置控制方法的优劣.最后分析了现有检测和控制方法应对DDoS 攻击的不足,并提出了DDoS 过滤系统的未来发展趋势和相关技术难点.
    2020,31(7):2245-2282, DOI:10.13328/j.cnki.jos.006037
    [摘要] (2775) [HTML] (2995) [PDF 967.02 K] (19799)
    摘要:
    超声诊断是甲状腺、乳腺癌首选影像学检查和术前评估方法.但良/恶性结节的超声表现存在重叠,仍欠缺定量、稳定的分析手段,严重依赖操作者的经验.近年来,基于计算机技术的医疗影像分析水平快速发展,超声影像分析取得了一系列里程碑式的突破,为医疗提供有效的诊断决策支持.以甲状腺、乳腺两类超声影像为对象,梳理了计算机视觉、图像识别技术在医学超声图像上的学术进展,以超声影像自动诊断涉及的一系列关键技术为主线,从图像预处理、病灶区定位及分割、特征提取和分类这4个方面对近年来主流算法进行了详尽的综述分析,从算法分析、数据和评估方法等方面进行多维度梳理.最后讨论了具体面向这两种腺体的超声图像计算机分析存在的问题,并对此领域的研究趋势和发展方向进行了展望.
    2003,14(9):1621-1628, DOI:
    [摘要] (13089) [HTML] (0) [PDF 680.35 K] (19726)
    摘要:
    推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量.
    2010,21(7):1620-1634, DOI:
    [摘要] (12424) [HTML] (0) [PDF 765.23 K] (19580)
    摘要:
    车用自组网作为移动自组网在智能交通系统中的应用,有望为人们提供更安全、效率更高的旅行方式.广播协议为危险警告、协同驾驶、路况通报等交通信息的发布提供了有效途径.简要介绍了车用自组网的特点和应用分类.采用分析和比较方法,讨论各种信息广播协议的特点、性能差异和应用范围,并针对车用自组网的特点及应用需求指出未来信息广播模型的设计思想和突破方向.
    2013,24(2):295-316, DOI:10.3724/SP.J.1001.2013.04336
    [摘要] (9804) [HTML] (0) [PDF 0.00 Byte] (19342)
    摘要:
    在新的应用模式下,传统层次结构数据中心网络在规模、带宽、扩展性和成本方面存在诸多不足.为了适应新型应用的需求,数据中心网络需要在低成本的前提下,满足高扩展性、低配置开销、健壮性和节能的要求.首先,概述了传统数据中心网络体系结构及其不足,并指出了新的需求;其次,将现有方案划分为两类,即以网络为中心和以服务器为中心的方案;然后,对两类方案中的代表性结构进行了详细的综述和对比分析;最后指出了数据中心网络未来的发展方向.
    2005,16(10):1743-1756, DOI:
    [摘要] (10033) [HTML] (0) [PDF 545.62 K] (19257)
    摘要:
    论述了可证明安全性理论在安全方案与安全协议的设计与分析中的应用,内容主要包括:什么是可证明安全性,可证明安全性理论涉及到的一些基本概念,RO(random oracle)模型方法论的基本思想及其在公钥加密和数字签名等方案中的应用研究进展,标准模型下可证明安全性理论在公钥加密和数字签名等方案中的应用研究进展,以及可证明安全性理论在会话密钥分配协议的设计与分析中的应用研究进展.
    2014,25(4):839-862, DOI:10.13328/j.cnki.jos.004558
    [摘要] (15335) [HTML] (2177) [PDF 1.32 M] (19048)
    摘要:
    大数据计算主要有批量计算和流式计算两种形态,目前,关于大数据批量计算系统的研究和讨论相对充分,而如何构建低延迟、高吞吐且持续可靠运行的大数据流式计算系统是当前亟待解决的问题且研究成果和实践经验相对较少.总结了典型应用领域中流式大数据所呈现出的实时性、易失性、突发性、无序性、无限性等特征,给出了理想的大数据流式计算系统在系统结构、数据传输、应用接口、高可用技术等方面应该具有的关键技术特征,论述并对比了已有的大数据流式计算系统的典型实例,最后阐述了大数据流式计算系统在可伸缩性、系统容错、状态一致性、负载均衡、数据吞吐量等方面所面临的技术挑战.
    2010,21(7):1605-1619, DOI:
    [摘要] (9859) [HTML] (0) [PDF 856.25 K] (18283)
    摘要:
    随着Internet规模的迅速扩大,复杂性和不确定性也随之增加,基于融合的网络态势感知必将成为网络管理的发展方向.在分析现有网络管理不足以及发展需求的基础上,介绍了网络态势感知的起源、概念、目标和特点.首先,提出了一个网络态势感知研究框架,介绍了研究历程,指出了研究重点以及存在的问题,并将现有评估方法分为3类:基于数学模型的方法、基于知识推理的方法、基于模式识别的方法.然后详细讨论了模型、知识表示和评估方法这3方面的研究内容,总结存在的共性问题,着重评价了每种评估方法的基本思路、评估过程和优缺点,并进行了对比分析.随后介绍了网络态势感知在安全、传输、生存性、系统评价等领域的应用研究.最后指出了网络态势感知的发展方向,并从问题体系、技术体系和应用体系3方面作了总结.
    2009,20(6):1393-1405, DOI:
    [摘要] (12057) [HTML] (0) [PDF 831.86 K] (18133)
    摘要:
    组合测试能够在保证错误检出率的前提下采用较少的测试用例测试系统.但是,组合测试用例集的构造问题的复杂度是NP完全的.组合测试方法的有效性和复杂性吸引了组合数学领域和软件工程领域的学者们对其进行深入的研究.总结了近年来在组合测试方面的研究进展,主要内容包括:组合测试准则的研究、组合测试生成问题与其他NP完全问题的联系、组合测试用例的数学构造方法、采用计算机搜索的组合测试生成方法以及基于组合测试的错误定位技术.
    2013,24(5):1078-1097, DOI:10.3724/SP.J.1001.2013.04390
    [摘要] (11759) [HTML] (0) [PDF 1.74 M] (18059)
    摘要:
    软件定义网络(software-defined networking,简称SDN)技术分离了网络的控制平面和数据平面,为研发网络新应用和未来互联网技术提供了一种新的解决方案.综述了基于OpenFlow 的SDN 技术发展现状,首先总结了逻辑控制和数据转发分离架构的研究背景,并介绍了其关键组件和研究进展,包括OpenFlow交换机、控制器和SDN技术,然后从4 个方面分析了基于OpenFlow 的SDN 技术目前所面临的问题和解决思路.结合近年来的发展现状,归纳了在校园网、数据中心以及面向网络管理和网络安全方面的应用,最后探讨了未来的研究趋势.
    2008,19(11):2803-2813, DOI:
    [摘要] (9217) [HTML] (0) [PDF 319.20 K] (17828)
    摘要:
    提出了一种基于近邻传播(affinity propagation,简称AP)算法的半监督聚类方法.AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,比如:K中心聚类算法.但是,对于一些聚类结构比较复杂的数据集,AP算法往往不能得到很好的聚类结果.使用已知的标签数据或者成对点约束对数据形成的相似度矩阵进行调整,进而达到提高AP算法的聚类性能.实验结果表明,该方法不仅提高了AP对复杂数据的聚类结果,而且在约束对数量较多时,该方法要优于相关比对算法.
    2011,22(3):381-407, DOI:10.3724/SP.J.1001.2011.03934
    [摘要] (10466) [HTML] (0) [PDF 614.69 K] (17826)
    摘要:
    互联网的普及和万维网的兴起,引发了软件技术的变革,催生了新的软件形态——网络化软件,为大众用户提供多样化、个性化的按需服务.随着应用领域的不断扩展和用户群的日益庞大,其规模与复杂度正以超越人类处理能力的速度增长,使得软件工程不得不面临一系列的挑战.为了科学地认识和理解这类规模庞大的人工复杂系统,从网络化-服务化-社会化的三维视角出发,对其基础设施、应用服务和大众交互三方面的复杂网络特性实证研究进行了综述分析,并系统论述了网络化软件中隐含的“小世界”和“无尺度”复杂网络特性对软件工程今后研究的影响和启示.软件工程与其他学科的交叉汇聚,将迸发新的观点和思想,为网络化软件的研究提供新的思维方式和方法论,有望实现软件工程理论、方法和关键技术的创新,从而推动我国软件服务业的快速发展.
    2009,20(8):2241-2254, DOI:
    [摘要] (6768) [HTML] (0) [PDF 1.99 M] (17711)
    摘要:
    从数据场思想出发,提出了一种基于拓扑势的社区发现算法.该方法引入拓扑势描述网络节点间的相互作用,将每个社区视为拓扑势场的局部高势区,通过寻找被低势区域所分割的连通高势区域实现网络的社区划分.理论分析与实验结果表明,该方法无须用户指定社区个数等算法参数,能够揭示网络内在的社区结构及社区间具有不确定性的重叠节点现象.算法的时间复杂度为O(m+n3/γ)~O(n2),n为网络节点数,m为边数,2<γ<3为一个常数.
    2017,28(1):160-183, DOI:10.13328/j.cnki.jos.005136
    [摘要] (8659) [HTML] (3651) [PDF 3.12 M] (17711)
    摘要:
    图像分割是指将图像分成若干具有相似性质的区域的过程,是许多图像处理任务的预处理步骤.近年来,国内外学者主要研究基于图像内容的分割算法.在广泛调研大量文献和最新成果的基础上,将图像分割算法分为基于图论的方法、基于像素聚类的方法和语义分割方法这3种类型并分别加以介绍.对每类方法所包含的典型算法,尤其是最近几年利用深度网络技术的语义图像分割方法的基本思想、优缺点进行了分析、对比和总结.介绍了图像分割常用的基准数据集和算法评价标准,并用实验对各种图像分割算法进行对比.最后进行总结,并对未来可能的发展趋势加以展望.
    2013,24(4):825-842, DOI:10.3724/SP.J.1001.2013.04369
    [摘要] (8383) [HTML] (0) [PDF 1.09 M] (17661)
    摘要:
    蜜罐是防御方为了改变网络攻防博弈不对称局面而引入的一种主动防御技术,通过部署没有业务用途的安全资源,诱骗攻击者对其进行非法使用,从而对攻击行为进行捕获和分析,了解攻击工具与方法,推测攻击意图和动机.蜜罐技术赢得了安全社区的持续关注,得到了长足发展与广泛应用,并已成为互联网安全威胁监测与分析的一种主要技术手段.介绍了蜜罐技术的起源与发展演化过程,全面分析了蜜罐技术关键机制的研究现状,回顾了蜜罐部署结构的发展过程,并归纳总结了蜜罐技术在互联网安全威胁监测、分析与防范等方向上的最新应用成果.最后,对蜜罐技术存在的问题、发展趋势与进一步研究方向进行了讨论.
    2018,29(1):42-68, DOI:10.13328/j.cnki.jos.005320
    [摘要] (9605) [HTML] (3013) [PDF 2.54 M] (17609)
    摘要:
    互联网已经渗入人类社会的各个方面,极大地推动了社会进步.与此同时,各种形式的网络犯罪、网络窃密等问题频繁发生,给社会和国家安全带来了极大的危害.网络安全已经成为公众和政府高度关注的重大问题.由于互联网的大量功能和网络上的各种应用都是由软件实现的,软件在网络安全的研究与实践中扮演着至关重要的角色.事实上,几乎所有的网络攻击都是利用系统软件或应用软件中存在的安全缺陷实施的.研究新形势下的软件安全问题日益迫切.从恶意软件、软件漏洞和软件安全机制这3个方面综述了国内外研究现状,进而分析软件生态系统面临的全新安全挑战与发展趋势.
    2023,34(2):625-654, DOI:10.13328/j.cnki.jos.006696
    [摘要] (2381) [HTML] (2938) [PDF 3.04 M] (17574)
    摘要:
    源代码缺陷检测是判别程序代码中是否存在非预期行为的过程,广泛应用于软件测试、软件维护等软件工程任务,对软件的功能保障与应用安全方面具有至关重要的作用.传统的缺陷检测研究以程序分析为基础,通常需要很强的领域知识与复杂的计算规则,面临状态爆炸问题,导致检测性能有限,在误报漏报率上都有较大提高空间.近年来,开源社区的蓬勃发展积累了以开源代码为核心的海量数据,在此背景下,利用深度学习的特征学习能力能够自动学习语义丰富的代码表示,从而为缺陷检测提供一种新的途径.搜集了该领域最新的高水平论文,从缺陷代码数据集与深度学习缺陷检测模型两方面系统地对当前方法进行了归纳与阐述.最后对该领域研究所面临的主要挑战进行总结,并展望了未来可能的研究重点.
    2016,27(3):691-713, DOI:10.13328/j.cnki.jos.004948
    [摘要] (9342) [HTML] (1731) [PDF 2.43 M] (17550)
    摘要:
    排序学习技术尝试用机器学习的方法解决排序问题,已被深入研究并广泛应用于不同的领域,如信息检索、文本挖掘、个性化推荐、生物医学等.将排序学习融入推荐算法中,研究如何整合大量用户和物品的特征,构建更加贴合用户偏好需求的用户模型,以提高推荐算法的性能和用户满意度,成为基于排序学习推荐算法的主要任务.对近些年基于排序学习的推荐算法研究进展进行综述,并对其问题定义、关键技术、效用评价、应用进展等进行概括、比较和分析.最后,对基于排序学习的推荐算法的未来发展趋势进行探讨和展望.
    2009,20(3):567-582, DOI:
    [摘要] (8286) [HTML] (0) [PDF 780.38 K] (17505)
    摘要:
    关于软件质量模型和软件质量评估模型的研究,一直是软件质量保障和评估领域的研究热点,国内外在这两方面进行了大量的研究,并取得了一定的研究成果.近年来,以操作系统为核心的基础软件呈平台化、体系化的发展趋势,基础软件平台的质量评估成为亟待解决的问题.在总结、分析软件质量模型、软件质量评估模型研究发展现状的基础上,重点归纳和描绘了基础软件平台的质量评估发展历程,并简要探讨了基础软件平台质量评估研究的发展方向,力求为展开基础软件平台的质量评估建立良好的基础.