庞浩,王枞.用于糖尿病视网膜病变检测的深度学习模型.软件学报,2017,28(11):3018-3029 |
用于糖尿病视网膜病变检测的深度学习模型 |
Deep Learning Model for Diabetic Retinopathy Detection |
投稿时间:2017-01-03 修订日期:2017-04-11 |
DOI:10.13328/j.cnki.jos.005332 |
中文关键词: 计算机视觉 卷积神经网络 深度学习 弱监督学习 糖尿病视网膜病变 |
英文关键词:computer vision convolutional neural network deep learning weak supervised learning diabetic retinopathy |
基金项目:国家重点研发计划(2016YFF0201003) |
|
摘要点击次数: 2069 |
全文下载次数: 4232 |
中文摘要: |
近年来,深度学习在计算机视觉方面取得了巨大的进步,并在利用计算机视觉完成医学影像的阅片工作方面展现出了良好的应用前景.针对糖尿病眼底病变筛查工作,通过构建两级深度卷积神经网络,完成了原始照片的特征提取、特征组合和结果分类,最终得出筛查结果.通过与医生的诊断结果进行比较,证明了模型的输出结果与医生诊断结果之间具有高度的一致性.同时,提出了利用弱监督学习进行细粒度图像分类的改进方法.最后,对未来研究的方向进行了展望. |
英文摘要: |
In recent years, deep learning in the computer vision has made great progress, showing good application prospects in medical image reading. In this paper, a model with construction of two-level deep convolution neural network is designed to achieve feature extraction, feature blend, and classification of the fundus photo. By comparing with doctor's diagnosis, it is shown that the output of the model is highly consistent with the doctor's diagnosis. In addition, an improved method of fine-grained image classification using weak supervised learning is proposed. Finally, future research direction is discussed. |
HTML 下载PDF全文 查看/发表评论 下载PDF阅读器 |