主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2020年专刊出版计划 微信服务介绍 最新一期:2019年第12期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
包仁达,庾涵,朱德发,黄少飞,孙瑶,刘偲.基于区域敏感生成对抗网络的自动上妆算法.软件学报,2019,30(4):896-913
基于区域敏感生成对抗网络的自动上妆算法
Automatic Makeup with Region Sensitive Generative Adversarial Networks
投稿时间:2018-04-16  修订日期:2018-06-13
DOI:10.13328/j.cnki.jos.005666
中文关键词:  生成对抗网络  自动上妆  人脸图像编辑  深度学习
英文关键词:generative adversarial nets  automatic makeup  face image editing  deep learning
基金项目:国家自然科学基金(U1536203,61572493,61876177)
作者单位E-mail
包仁达 中国科学院 信息工程研究所, 北京 100093  
庾涵 中国科学院 信息工程研究所, 北京 100093  
朱德发 中国科学院 信息工程研究所, 北京 100093  
黄少飞 中国科学院 信息工程研究所, 北京 100093  
孙瑶 中国科学院 信息工程研究所, 北京 100093  
刘偲 北京航空航天大学 计算机学院, 北京 100191 liusi@buaa.edu.cn 
摘要点击次数: 764
全文下载次数: 462
中文摘要:
      自动上妆旨在通过计算机算法实现人脸妆容的编辑与合成,隶属于人脸图像分析领域.其在互动娱乐应用、图像视频编辑、辅助人脸识别等多方面起着重要作用.然而作为人脸编辑任务,其仍难以在保证图像的编辑结果自然、真实的同时又很好地满足编辑需求,并且仍有难以精确控制编辑区域、图像编辑前后一致性差、图像质量不够精细等问题.针对以上难点,创新性地提出了一种掩模控制的自动上妆生成对抗网络,该网络利用掩模方法,能够重点编辑上妆区域,约束人脸妆容编辑中无需编辑的区域不变,保持主体信息.同时其又能单独编辑人脸的眼影、嘴唇、脸颊等局部区域,实现特定区域上妆,丰富了上妆功能.此外,该网络能够进行多数据集联合训练,除妆容数据集外,还可以使用其他人脸数据集作为辅助,增强模型的泛化能力,得到更加自然的上妆结果.最后,依据多种评价标准,进行了充分的定性及定量实验,并与目前的主流算法进行了对比,综合评价了所提方法的性能.
英文摘要:
      Automatic makeup refers to the editing and synthesis of face makeup through computer algorithms. It belongs to the field of face image analysis, and plays an important role in interactive entertainment applications, image and video editing, and face recognition. However, as a face editing problem, it is still difficult to ensure that the editing result of the image is natural and satisfies the editing requirements. Makeup still has some difficulties such as precisely controlling the editing area is hard, the image consistency before and after editing is poor, and the image quality is insufficient. In response to these difficulties, this study innovatively proposes a mask-controlled automatic makeup generative adversarial network. Through a masking method, this network can edit the makeup area with emphasis, restrict the area that does not require editing, and maintain the key information. At the same time, it can separately edit the eye shadow, lips, cheeks, and other local areas of the face to achieve makeup on specific areas and enrich the makeup function. In addition, this network can be trained jointly on multiple datasets. In addition to makeup dataset, it can also use other face datasets as an aid to enhance the model's generalization ability and get a more natural makeup result. Finally, based on a variety of evaluation methods, more comprehensive qualitative and quantitative experiments are carried out, the results are compared with the other methods, and the performance of the proposed method is comprehensively evaluated.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会 京ICP备05046678号-4
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利