主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第7期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
谭桥宇,余国先,王峻,郭茂祖.基于标记与特征依赖最大化的弱标记集成分类.软件学报,2017,28(11):2851-2864
基于标记与特征依赖最大化的弱标记集成分类
Ensemble Weak-Label Classification by Maximizing Dependency Between Label and Feature
投稿时间:2017-03-29  修订日期:2017-06-16
DOI:10.13328/j.cnki.jos.005339
中文关键词:  弱标记学习  高维数据  特征子集  依赖最大化  集成分类
英文关键词:weak label learning  high-dimensional data  feature subset  dependency maximization  ensemble classification
基金项目:国家自然科学基金(61402378,61571163,61532014,61671189);重庆市基础与前沿研究项目(cstc2014jcyjA40031,cstc2016jcyjA0351)
作者单位
谭桥宇 西南大学 计算机与信息科学学院, 重庆 400715 
余国先 西南大学 计算机与信息科学学院, 重庆 400715 
王峻 西南大学 计算机与信息科学学院, 重庆 400715 
郭茂祖 北京建筑大学 电气与信息工程学院, 北京 100044 
摘要点击次数: 453
全文下载次数: 511
中文摘要:
      弱标记学习是多标记学习的一个重要分支,近几年已被广泛研究并被应用于多标记样本的缺失标记补全和预测等问题.然而,针对特征集合较大、更容易拥有多个语义标记和出现标记缺失的高维数据问题,现有弱标记学习方法普遍易受这类数据包含的噪声和冗余特征的干扰.为了对高维多标记数据进行准确的分类,提出了一种基于标记与特征依赖最大化的弱标记集成分类方法EnWL.EnWL首先在高维数据的特征空间多次利用近邻传播聚类方法,每次选择聚类中心构成具有代表性的特征子集,降低噪声和冗余特征的干扰;再在每个特征子集上训练一个基于标记与特征依赖最大化的半监督多标记分类器;最后,通过投票集成这些分类器实现多标记分类.在多种高维数据集上的实验结果表明,EnWL在多种评价度量上的预测性能均优于已有相关方法.
英文摘要:
      Weak label learning is an important sub-branch of multi-label learning which has been widely studied and applied in replenishing missing labels of partially labeled instances or classifying new instances. However, existing weak label learning methods are generally vulnerable to noisy and redundant features in high-dimensional data where multiple labels and missing labels are more likely present. To accurately classify high-dimensional multi-label instances, in this paper, an ensemble weak label classification method is proposed by maximizing dependency between labels and features (EnWL for short). EnWL first repeatedly utilizes affinity propagation clustering in the feature space of high-dimensional data to find cluster centers. Next, it uses the obtained cluster centers to construct representative feature subsets and to reduce the impact of noisy and redundant features. Then, EnWL trains a semi-supervised multi-label classifier by maximizing the dependency between labels and features on each feature subset. Finally, it combines these base classifiers into an ensemble classifier via majority vote. Experimental results on several high-dimensional datasets show that EnWL significantly outperforms other related methods across various evaluation metrics.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 
主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利