主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第8期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
毛嘉莉,金澈清,章志刚,周傲英.轨迹大数据异常检测:研究进展及系统框架.软件学报,2017,28(1):17-34
轨迹大数据异常检测:研究进展及系统框架
Anomaly Detection for Trajectory Big Data: Advancements and Framework
投稿时间:2016-05-25  修订日期:2016-08-18
DOI:10.13328/j.cnki.jos.005151
中文关键词:  异常检测  轨迹大数据  概念漂移  时变进化性
英文关键词:anomaly detection  trajectory big data  concept drift  time-varying evolutionary
基金项目:国家自然科学基金(61370101,U1501252,U1401256);上海市教委创新计划(14ZZ045);西华师范大学国家级项目培育专项(16C005)
作者单位E-mail
毛嘉莉 华东师范大学数据科学与工程学院, 上海 200062
西华师范大学计算机学院, 四川 南充 637009 
jlmao1231@stu.ecnu.edu.cn 
金澈清 华东师范大学数据科学与工程学院, 上海 200062  
章志刚 华东师范大学数据科学与工程学院, 上海 200062  
周傲英 华东师范大学数据科学与工程学院, 上海 200062  
摘要点击次数: 3752
全文下载次数: 4692
中文摘要:
      定位技术与普适计算的蓬勃发展催生了轨迹大数据,轨迹大数据表现为定位设备所产生的大规模高速数据流.及时、有效地对以数据流形式出现的轨迹大数据进行分析处理,可以发现隐含在轨迹数据中的异常现象,从而服务于城市规划、交通管理、安全管控等应用.受限于轨迹大数据固有的不确定性、无限性、时变进化性、稀疏性和偏态分布性等特征,传统的异常检测技术不能直接应用于轨迹大数据的异常检测.由于静态轨迹数据集的异常检测方法通常假定数据分布先验已知,忽视了轨迹数据的时间特征,也不能评测轨迹大数据中动态演化的异常行为.面对轨迹大数据低劣的数据质量和快速的数据更新,需要利用有限的系统资源处理因时变带来的概念漂移,实时地检测多样化的轨迹异常,分析轨迹异常间的因果联系,继而识别更大时空区域内进化的、关联的轨迹异常,这是轨迹大数据异常检测的核心研究内容.此外,融合与位置服务应用相关的多源异质数据,剖析异常轨迹的起因以及其隐含的异常事件,也是轨迹大数据异常检测当下亟待研究的问题.为解决上述问题,对轨迹异常检测技术的研究成果进行了分类总结.针对现有轨迹异常检测方法的局限性,提出了轨迹大数据异常检测的系统架构.最后,在面向轨迹流的在线异常检测、轨迹异常的演化分析、轨迹异常检测系统的基准评测、异常检测结果语义分析的数据融合以及轨迹异常检测的可视化技术等方面探讨了今后的研究工作.
英文摘要:
      The vigorous development of positioning technology and pervasive computing has given rise to trajectory big data, i.e. the high speed trajectory data stream that originated from positioning devices. Analyzing trajectory big data timely and effectively enables us to discover the abnormal patterns that hide in trajectory data streams, and therefore to provide effective support to applications such as urban planning, traffic management, and security controlling. The traditional anomaly detection algorithms cannot be applied to outlier detection in trajectory big data directly due to the characteristics of trajectories such as uncertainty, un-limitedness, time-varying evolvability, sparsity and skewness distribution. In addition, most of trajectory outlier detection methods designed for static trajectory dataset usually assume a priori known data distribution while disregarding the temporal property of trajectory data, and thus are unsuitable for identifying the evolutionary trajectory outlier. When dealing with huge amount of low-quality trajectory big data, a series of issues need to be addressed. Those issues include coping with the concept drifts of time-varying data distribution in limited system resources, online detecting trajectory outliers, analyzing causal interactions among traffic outliers, identifying the evolutionary related trajectory outlier in larger spatial-temporal regions, and analyzing the hidden abnormal events and the root cause in trajectory anomalies by using application related multi-source heterogeneous data. Aiming at solving the problems mentioned above, this paper reviews the existing trajectory outlier detecting techniques from several categories, describes the system architecture of outlier detection in trajectory big data, and discusses the research directions such as outlier detection in trajectory stream, visualization and evolutionary analysis in trajectory outlier detection, benchmark for trajectory outlier detection system, and data fusion in semantic analysis for anomaly detection results.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利