主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第10期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
姜枫,顾庆,郝慧珍,李娜,郭延文,陈道蓄.基于内容的图像分割方法综述.软件学报,2017,28(1):160-183
基于内容的图像分割方法综述
Survey on Content-Based Image Segmentation Methods
投稿时间:2016-06-16  修订日期:2016-09-07
DOI:10.13328/j.cnki.jos.005136
中文关键词:  图像分割  图论  聚类  语义分割  深度神经网络
英文关键词:image segmentation  graph theory  clustering  semantic segmentation  deep neural network
基金项目:国家自然科学基金(61373012,91218302,61321491,61373059);江苏省高校自然科学研究项目(15KJB520016);江苏省自然科学基金(BK20150016)
作者单位E-mail
姜枫 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023
南京大学 计算机科学与技术系, 江苏 南京 210023
南京理工大学泰州科技学院 移动互联网学院, 江苏 泰州 225300 
 
顾庆 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023
南京大学 计算机科学与技术系, 江苏 南京 210023 
guq@nju.edu.cn 
郝慧珍 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023
南京大学 计算机科学与技术系, 江苏 南京 210023
南京工程学院 通信工程系, 江苏 南京 211167 
 
李娜 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023
南京大学 计算机科学与技术系, 江苏 南京 210023 
 
郭延文 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023
南京大学 计算机科学与技术系, 江苏 南京 210023 
 
陈道蓄 计算机软件新技术国家重点实验室(南京大学), 江苏 南京 210023
南京大学 计算机科学与技术系, 江苏 南京 210023 
 
摘要点击次数: 3991
全文下载次数: 5201
中文摘要:
      图像分割是指将图像分成若干具有相似性质的区域的过程,是许多图像处理任务的预处理步骤.近年来,国内外学者主要研究基于图像内容的分割算法.在广泛调研大量文献和最新成果的基础上,将图像分割算法分为基于图论的方法、基于像素聚类的方法和语义分割方法这3种类型并分别加以介绍.对每类方法所包含的典型算法,尤其是最近几年利用深度网络技术的语义图像分割方法的基本思想、优缺点进行了分析、对比和总结.介绍了图像分割常用的基准数据集和算法评价标准,并用实验对各种图像分割算法进行对比.最后进行总结,并对未来可能的发展趋势加以展望.
英文摘要:
      Image segmentation is the process of dividing the image into a number of regions with similar properties, and it's the preprocessing step for many image processing tasks. In recent years, domestic and foreign scholars mainly focus on the content-based image segmentation algorithms. Based on extensive research on the existing literatures and the latest achievements, this paper categorizes image segmentation algorithms into three types:graph theory based method, pixel clustering based method and semantic segmentation method. The basic ideas, advantage and disadvantage of typical algorithms belong to each category, especially the most recent image semantic segmentation algorithms based on deep neural network are analyzed, compared and summarized. Furthermore, the paper introduces the datasets which are commonly used as benchmark in image segmentation and evaluation criteria for algorithms, and compares several image segmentation algorithms with experiments as well. Finally, some potential future research work is discussed.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 

京公网安备 11040202500064号

主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利