主页期刊介绍编委会编辑部服务介绍道德声明在线审稿编委办公编辑办公English
2018-2019年专刊出版计划 微信服务介绍 最新一期:2018年第5期
     
在线出版
各期目录
纸质出版
分辑系列
论文检索
论文排行
综述文章
专刊文章
美文分享
各期封面
E-mail Alerts
RSS
旧版入口
中国科学院软件研究所
  
投稿指南 问题解答 下载区 收费标准 在线投稿
杭文龙,蒋亦樟,刘解放,王士同.迁移近邻传播聚类算法.软件学报,2016,27(11):2796-2813
迁移近邻传播聚类算法
Transfer Affinity Propagation Clustering Algorithm
投稿时间:2014-10-29  修订日期:2015-03-18
DOI:10.13328/j.cnki.jos.004921
中文关键词:  迁移学习  统计特征  几何结构  近邻传播  聚类方法  非充分数据
英文关键词:transfer learning  statistical property  geometric structure  affinity propagation (AP)  cluster method  insufficient data
基金项目:国家自然科学基金(61272210,61202311,61300151);江苏省自然科学基金(BK2012552,BK20130155)
作者单位E-mail
杭文龙 江南大学 数字媒体学院, 江苏 无锡 214122 hwl881018@163.com 
蒋亦樟 江南大学 数字媒体学院, 江苏 无锡 214122  
刘解放 江南大学 数字媒体学院, 江苏 无锡 214122  
王士同 江南大学 数字媒体学院, 江苏 无锡 214122  
摘要点击次数: 1463
全文下载次数: 1405
中文摘要:
      在目标域可利用数据匮乏的场景下,传统聚类算法的性能往往会下降.在该场景下,通过抽取源域中的有用知识用于指导目标域学习以得到更为合适的类别信息和聚类性能,是一种有效的学习策略.借此提出一种基于近邻传播的迁移聚类(transfer affinity propagation,简称TAP)算法,在源域和目标域数据分布相似的情况下,通过引入迁移学习机制来改善近邻传播聚类(affinity propagation,简称AP)算法在数据匮乏场景下的聚类性能.为保证迁移的有效性,TAP在综合考虑源域和目标域的统计特性及几何特征的基础上改进AP算法中的消息传递机制使其具备迁移能力,从而达到辅助目标域学习的目的.此外,通过TAP对应的因子图,亦可说明TAP可以以类似AP的消息传递机制,在目标域数据匮乏的情况下进行高效的知识迁移,为最终所获得的聚类结果提供了保证.在模拟数据集和真实数据集上的仿真实验结果显示,所提出的算法较之经典AP算法在处理非充分数据聚类任务时具有更佳的性能.
英文摘要:
      The main limitation of most traditional clustering methods is that they cannot effectively deal with the insufficient datasets in target domain. It is desirable to develop new cluster algorithms which can leverage useful information in the source domain to guide the clustering performance in the target domain so that appropriate number of clusters and high quality clustering result can be obtained in this situation. In this paper, a clustering algorithm called transfer affinity propagation (TAP) is proposed for the insufficient dataset scenarios. The new algorithm improves the clustering performance when the distribution of source and target domains are similar. The basic idea of TAP is to modify the update rules about two message propagations, used in affinity propagation (AP), through leveraging statistical property and geometric structure together. With the corresponding factor graph, TAP indeed can be applied to cluster in AP-like transfer learning, i.e., TAP can abstract the knowledge of source domains through the two tricks to enhance the learning of target domain even if the data in the current scene are not adequate. Extensive experiments demonstrate that the proposed algorithm outperforms traditional algorithms in situations of insufficient data.
HTML  下载PDF全文  查看/发表评论  下载PDF阅读器
 
主办单位:中国科学院软件研究所 中国计算机学会
编辑部电话:+86-10-62562563 E-mail: jos@iscas.ac.cn
Copyright 中国科学院软件研究所《软件学报》版权所有 All Rights Reserved
本刊全文数据库版权所有,未经许可,不得转载,本刊保留追究法律责任的权利